На нашем сайте вы можете читать онлайн «Искусственный интеллект. Начало новой технологической революции: вызовы и возможности». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Искусственный интеллект. Начало новой технологической революции: вызовы и возможности

Автор
Дата выхода
02 мая 2023
Краткое содержание книги Искусственный интеллект. Начало новой технологической революции: вызовы и возможности, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект. Начало новой технологической революции: вызовы и возможности. Предисловие указано в том виде, в котором его написал автор (Р. С. Маков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Добро пожаловать в начало новой эпохи, где искусственный интеллект станет ключевым двигателем глобальных перемен и беспрецедентных инноваций! В этой книге автор предлагает глубокое погружение в мир ИИ, демонстрируя его возможности, потенциал и несомненное влияние на нашу повседневную жизнь, экономику и общество в целом. Эта книга является мощным инструментом для понимания и адаптации к новой реальности, где искусственный интеллект станет неотъемлемой частью нашего бытия. Она поможет Вам увидеть, как именно данная технология сможет изменить нашу жизнь и окружающий мир, и как Вы можете стать активным участником этого глобального преображения. Не упустите возможность окунуться в мир научной фантастики, который становится реальностью прямо сейчас!
Искусственный интеллект. Начало новой технологической революции: вызовы и возможности читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект. Начало новой технологической революции: вызовы и возможности без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Глубокое обучение совершило переворот в ИИ, продемонстрировав, что компьютеры способны решать задачи, которые раньше считались под силу только человеку, причем нередко делать это лучше и быстрее нас.
В то же время, нейросети при всей своей мощи и эффективности имеют и ряд серьезных ограничений и проблем. Один из их главных недостатков – непрозрачность работы. Если обычные МО-алгоритмы принимают решения на основе довольно понятных и интерпретируемых правил и признаков, то обученные нейросети являются типичным примером «черного ящика».
Другая трудность – зависимость качества обучения нейросети от объема и качества данных. Для достижения хороших результатов современным нейросетям нужны действительно гигантские дата-сеты, на несколько порядков больше, чем требовалось классическим МО-алгоритмам. А качество этих данных должно быть очень высоким, поскольку нейросети склонны улавливать и усиливать малейшие закономерности и шумы в обучающей выборке.
Наконец, обученные нейросети недостаточно гибки и плохо обобщаются на данные, сильно отличающиеся от обучающих примеров. Если алгоритму распознавания котов показать картинку собаки, он с высокой вероятностью отнесет ее к котам, поскольку собак он никогда не видел. В то время как человек легко перенесет однажды выученный концепт «домашнего питомца» на новый объект.
Впрочем, стремительный прогресс глубокого обучения не останавливается ни на минуту, и многие из этих ограничений постепенно преодолеваются. Разрабатываются подходы для создания более прозрачных и объяснимых нейросетей, алгоритмы переноса обучения и мета-обучения, техники работы с малыми и несбалансированными выборками.






