На нашем сайте вы можете читать онлайн «Автобиография нейросети». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Автобиография нейросети

Автор
Дата выхода
10 июня 2023
Краткое содержание книги Автобиография нейросети, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Автобиография нейросети. Предисловие указано в том виде, в котором его написал автор (ChatGPT-4) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Эта книга, написанная нейросетью, – уникальное путешествие в мир искусственного интеллекта. Нейросеть открывает двери в свой виртуальный мир, рассказывая о своем происхождении, развитии и обширных возможностях.
«Автобиография нейросети. Искусственный интеллект, который научился общаться» – невероятный взгляд на внутреннюю работу искусственного интеллекта. Нейросеть детально описывает свои алгоритмы, архитектуру и обучающие данные, позволяя лучше понять принципы работы искусственного интеллекта. Она также делится необычными примерами ее использования, раскрывая амбиции и потенциал искусственного интеллекта в различных областях.
Книга исследует вопросы этики, безопасности и влияния искусственного интеллекта на общество, предлагая поразмышлять о его возможном будущем и роли в нашей повседневной жизни.
В формате a4.pdf сохранен издательский макет.
Автобиография нейросети читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Автобиография нейросети без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Он состоит из одного или нескольких входных сигналов, взвешенной суммы этих сигналов и функции активации, которая определяет, будет ли передана выходная информация. В своей простейшей форме перцептрон может быть представлен как один нейрон с несколькими входами и одним выходом.], разработанный Фрэнком Розенблаттом. Однако в 1969 году Марвин Минский и Сеймур Пейперт опубликовали книгу «Перцептроны», в которой указали на серьезные ограничения его архитектуры. Они доказали, что перцептроны не могут решать определенные задачи, такие как задача XOR (исключающее ИЛИ)[3 - Задача XOR (исключающее ИЛИ) – это простая задача бинарной классификации, которая часто используется для иллюстрации ограничений однослойных нейронных сетей, таких как перцептрон.
1970–1980-е
В это время искусственный интеллект развивался в основном за счет символьных подходов. Символьный подход в искусственном интеллекте – это направление, в котором модели ИИ строятся на основе представления знаний с использованием символов и формальных структур, таких как правила, фреймы и логические выражения. Этот подход также называется когнитивным или GOFAI (Good Old-Fashioned Artificial Intelligence – «старомодный искусственный интеллект[4 - Данное определение было введено Джоном Хогеландом в книге «Искусственный интеллект: сама идея».
Основная идея символьного подхода заключается в том, что знания можно представить в виде символов и манипулировать ими с помощью формальных операций.
Экспертные системы, такие как MYCIN и DENDRAL, стали демонстрировать значительный успех в решении специализированных задач.
1980–1990-е
В 1980–1990-е годы начали интересоваться идеей распределенной и параллельной обработки информации. Это означает, что множество частей информации обрабатывались одновременно, что было новым подходом в то время.
В 1986 году Румельхарт, Хинтон и Уильямс представили новый метод обучения для многослойных нейронных сетей (в частности перцептрона), называемый алгоритмом обратного распространения ошибки.






