На нашем сайте вы можете читать онлайн «NP=P? Алгоритмы решения NP-задач матричным методом в программе Scilab. Математическое эссе». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Серьезное чтение, Современная проза, Современная русская литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
NP=P? Алгоритмы решения NP-задач матричным методом в программе Scilab. Математическое эссе

Автор
Дата выхода
08 ноября 2018
Краткое содержание книги NP=P? Алгоритмы решения NP-задач матричным методом в программе Scilab. Математическое эссе, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению NP=P? Алгоритмы решения NP-задач матричным методом в программе Scilab. Математическое эссе. Предисловие указано в том виде, в котором его написал автор (Людмила Наумова) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Из курса школьной математики нам все известны задачи комбинаторики, такие как задачи на перестановки, сочетания, размещения. NP- задачи, в принципе, представляют все те же задачи комбинаторики, но в больших числах.
NP=P? Алгоритмы решения NP-задач матричным методом в программе Scilab. Математическое эссе читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу NP=P? Алгоритмы решения NP-задач матричным методом в программе Scilab. Математическое эссе без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Задана матрица расстояний между любыми парами городов,
Задачи, подобные по приведенным выше 3-м примерам кажутся неразрешимыми (до сих пор никто не смог доказать, что какая-то из них на самом деле так сложна, как кажется, т.е. что действительно нет возможности получить ответ с помощью компьютера).
Составим модели этих задач в малых числах для нахождения алгоритма и решения этих задач:
Задача-модель №1
Предположим, что вы организуете размещение группы из 5 студентов университета. Количество мест ограничено, и только 3 студента получат места в общежитии.
Задача-модель №1—1
Предположим, что вы организуете размещение группы из 9 студентов университета. Количество мест ограничено 4 – это 2 комнаты по 2 человека, и только 4 студента получат места в общежитии.
Найти эти решения.
Задача-модель №3.
Требуется найти кратчайший путь, проходящий точно по одному разу через каждый из четырех городов А, B.
. Задана матрица расстояний между любыми парами городов,
Решения NP-задач и их задач-моделей аналогичны и имеют одни и те же алгоритмы, решения задач-моделей приведены ниже.
– Задание исходных данных
Исходные данные в командах задаются вектором (единичной матрицей), но возможно и двумерной матрицей, несколькими матрицам и т. д. Каждому объекту присваивается порядковый номер. Например, имеем 5 студентов:
Зададим каждому студенту свой номер по порядку: 1.
Запуск программы:
загрузка исходного окружения
– > n= [1 2 3 4 5]
n =
– 2. 3. 4. 5.
– Перестановки
Перестановка осуществляется при помощи команды perms (n):
Теперь найдем все возможные перестановки от 1 до 5-ти, их будет 120. Ответ запишется в виде матрицы, где каждая строка – это вариант одной из перестановок, число строк в матрице будет равно количеству вариантов перестановок, а число столбцов будет равно исходно заданным элементам (в нашем случае 5).
– > P=perms (n)
Перестановки с последующей заменой матрицы и нахождения решений
Как пример со сложной перестановкой (замена матрицы, полученной как перестановки на другую матрицу), задача-модель №3:
Требуется найти кратчайший путь, проходящий точно по одному разу через каждый из четырех городов А, B. C. D.








