На нашем сайте вы можете читать онлайн «Основы теории искусственных нейронных сетей». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Серьезное чтение, Современная проза, Современная русская литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Основы теории искусственных нейронных сетей

Дата выхода
19 февраля 2020
Краткое содержание книги Основы теории искусственных нейронных сетей, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Основы теории искусственных нейронных сетей. Предисловие указано в том виде, в котором его написал автор (Александр Аполлонович Кириченко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Искусственные нейронные сети — один из разделов науки Искусственный интеллект. Рассматриваются 4 уровня нейросетевого моделирования и 4 вида наиболее продуктивных нейронных сетей. Проведен анализ эффективности использования различных нейросетей при решении практических задач. Книга предназначена для знакомства с нейросетевыми технологиями.
Основы теории искусственных нейронных сетей читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Основы теории искусственных нейронных сетей без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Основными зарубежными проектами создания подобных ИКС являются
· европейские проекты BBP/HBP,
· американская инициатива BRAIN,
· проект IBM DeepQA «Watson»,
· проект «Siri» корпорации Apple,
· проект нейросетевого искусственного интеллекта и использующих его роботов компании Google,
· японские проекты JST,
· канадский проект «Spaun» и др.
С 2012 года в России началось активное проведение ИТ-исследований в сфере разработки искусственных когнитивных систем, разработана Стратегическая программа создания Центра прорывных исследований в области информационных технологий «Искусственные когнитивные системы».
Повышение интереса к тематике искусственного интеллекта требует появления достаточного количества публикаций о структуре и возможностях нейросистем, о типах искусственных нейросетей и открываемых ими возможностях автоматизации мыслительных процессов. Для удовлетворения возникающих потребностей необходимы с одной стороны – новые информационные материалы, и с другой стороны – программные средства, которые позволяют без особых затрат проверить новую информацию на практике, создавать свои нейросетевые системы разных типов, модели нейросетевых устройств и даже узлов нейрокомпьютеров на своём ноутбуке.
Искусственные нейросети являются электронными моделями нейронной структуры мозга.
Продолжительный период эволюции придал мозгу человека много качеств, отсутствующих в современных компьютерах с архитектурой фон Неймана. К ним относятся:
· способность к обучению и обобщению
· ассоциативность и адаптивность
· толерантность к ошибкам
· параллельность работы
Множество проблем, не поддающиеся решению традиционными компьютерами, могут быть эффективно решены с помощью нейросетей.
Достижения в области нейрофизиологии дают начальное понимание механизма естественного мышления, в котором хранение информации происходит в виде сложных образов. Процессы хранения информации в виде образов, использования образов при решении поставленной проблемы определяют новую область в обработке данных, которая, не используя традиционного программирования, обеспечивает создание нейронных сетей и их обучение.







