На нашем сайте вы можете читать онлайн «Нейронные сети». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Словари, справочники, Руководства. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейронные сети

Автор
Дата выхода
31 мая 2023
Краткое содержание книги Нейронные сети, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейронные сети. Предисловие указано в том виде, в котором его написал автор (Александр Чичулин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Раскройте потенциал нейронных сетей для достижения финансового успеха! Эта книга вооружает читателей всех возрастов знаниями и стратегиями, необходимыми для эффективного использования нейронных сетей в бизнесе. От понимания основ до практического применения! Узнайте, как зарабатывать большие деньги, используя передовые методы. Получите представление о сетевых архитектурах, сборе данных, обучении и реальных внедрениях в разных отраслях.
Нейронные сети читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейронные сети без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
– Кодирование признаков: преобразуйте категориальные переменные в числовые представления, используя такие методы, как одноразовое кодирование или кодирование меток, в зависимости от характера данных.
– Обработка отсутствующих данных: Устраните недостающие данные, исчисляя значения или рассматривая такие стратегии, как удаление отсутствующих данных или использование передовых методов условного исчисления.
– Обработка выбросов: Идентификация и обработка выбросов, которые являются экстремальными значениями, которые могут повлиять на производительность нейронной сети.
– Секционирование данных: разделите данные на обучающие, проверочные и тестовые наборы. Обучающий набор используется для обучения нейронной сети, проверочный набор помогает в настройке гиперпараметров, а тестовый набор используется для оценки конечной производительности модели.
6. Проектирование функций: извлечение или создание новых функций из существующих данных, которые могут повысить производительность нейронной сети.
7. Увеличение данных (необязательно): методы увеличения данных могут применяться, в первую очередь в графических и текстовых данных, для искусственного увеличения размера и разнообразия обучающих данных.
8. Балансировка данных (если применимо): В случаях, когда данные несбалансированы, когда один класс доминирует над другими, рассмотрите такие методы, как избыточная или недостаточная дискретизация, чтобы сбалансировать классы.
9. Нормализация данных: Нормализуйте данные, чтобы убедиться, что они имеют среднее значение, равное нулю, и стандартное отклонение, равное единице. Нормализация может помочь в улучшении сходимости и стабильности нейронной сети во время обучения.
10.











