Главная » Знания и навыки » Нейронные сети (сразу полная версия бесплатно доступна) Александр Чичулин читать онлайн полностью / Библиотека

Нейронные сети

На нашем сайте вы можете читать онлайн «Нейронные сети». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Словари, справочники, Руководства. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Дата выхода

31 мая 2023

Краткое содержание книги Нейронные сети, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейронные сети. Предисловие указано в том виде, в котором его написал автор (Александр Чичулин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Раскройте потенциал нейронных сетей для достижения финансового успеха! Эта книга вооружает читателей всех возрастов знаниями и стратегиями, необходимыми для эффективного использования нейронных сетей в бизнесе. От понимания основ до практического применения! Узнайте, как зарабатывать большие деньги, используя передовые методы. Получите представление о сетевых архитектурах, сборе данных, обучении и реальных внедрениях в разных отраслях.

Нейронные сети читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейронные сети без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Используйте статистические показатели, визуализации (например, гистограммы, точечные диаграммы, блочные диаграммы) и методы уменьшения размерности (например, анализ главных компонент) для изучения данных.

5. Выбор функций и проектирование: Выберите из собранных данных релевантные функции, которые наиболее информативны для рассматриваемой проблемы. Используйте знания предметной области и статистические методы (например, корреляционный анализ, важность признаков) для определения наиболее значимых признаков. Кроме того, рассмотрите методы проектирования признаков для создания новых функций, которые собирают соответствующую информацию и повышают производительность модели.

Тут будет реклама 1

6. Преобразование данных: Выполните необходимые преобразования данных, чтобы сделать их пригодными для обучения нейронной сети. Это может включать в себя такие методы, как:

– Нормализация/стандартизация: Масштабируйте числовые признаки до аналогичного диапазона (например, используя шкалу min-max или стандартизацию z-баллов), чтобы предотвратить доминирование какой-либо конкретной функции в процессе обучения.

Тут будет реклама 2

– One-Hot Encoding: преобразуйте категориальные переменные в двоичные векторы (0 и 1), чтобы представить их численно. Это позволяет нейронным сетям эффективно обрабатывать категориальные данные.

– Предварительная обработка текста: При работе с текстовыми данными выполните этапы предварительной обработки текста, такие как токенизация, удаление стоп-слов, стемминг или лемматизация, а также методы векторизации (например, TF-IDF, встраивание слов) для представления текстовых данных в формате, подходящем для нейронных сетей.

Тут будет реклама 3

– Предварительная обработка временных рядов: При работе с данными временных рядов выполняйте такие задачи, как передискретизация, работа с окнами или запаздывание, чтобы преобразовать данные в формат, фиксирующий временные зависимости.

7. Разделение данных: Разделите предварительно обработанные данные на наборы для обучения, проверки и тестирования. Обучающий набор используется для обучения нейронной сети, проверочный – для настройки гиперпараметров и выбора модели, а тестовый – для оценки производительности конечной модели.

Тут будет реклама 4
Рассмотрите соответствующие соотношения (например, 70-15-15) в зависимости от размера набора данных и сложности проблемы.

8. Увеличение данных (если применимо): В некоторых случаях методы увеличения данных могут быть использованы для искусственного увеличения

размер и разнообразие обучающих данных.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Нейронные сети, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Александр Чичулин! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги