На нашем сайте вы можете читать онлайн «Предсказываем тренды. С Rattle и R в мир моделей классификации». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Просто о бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Предсказываем тренды. С Rattle и R в мир моделей классификации

Автор
Дата выхода
12 апреля 2019
Краткое содержание книги Предсказываем тренды. С Rattle и R в мир моделей классификации, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Предсказываем тренды. С Rattle и R в мир моделей классификации. Предисловие указано в том виде, в котором его написал автор (Александр Фоменко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга является практическим руководством по обучению моделей предсказаниям трендов на рынке Форекс. Берем исторические значения исходных данных — котировок, индикаторов, макроэкономических данных, и на них учим модель предсказывать «лонги-шорты». Данная книга является практическим применением пакета Rattle к рынку Форекс и терминалу МТ4 c комментариями идеологии моделей классификации и их оценки. Книга доступна новичкам, а также полезна опытным трейдерам в терминале МТ4.
Предсказываем тренды. С Rattle и R в мир моделей классификации читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Предсказываем тренды. С Rattle и R в мир моделей классификации без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Эта модель, как говорят, переобучена, и с плохой точностью предскажет целевую переменную на новой выборке.
Изначально, мы учим модель на наборе данных обучения и по результатам обучения получаем некую величину ошибки для регрессионных моделей, или рассогласование для классификационных моделей.
Уже на этом этапе возможно переобучение модели: оценка слишком оптимистична, например, ошибка подгонки менее 5%. Да и ошибка подгонки в 10% должна насторожить!
В этих ситуациях очень важно иметь инструмент для определения переобученности модели на учебных данных.
3.2. Настройка модели
У многих моделей есть важные параметры, которые не могут быть непосредственно оценены на данных. Например, в модели классификации K-ближайшие соседи предсказание основано на K самых близких точек данных в наборе данных обучения.
Очевиден вопрос: сколько соседей должно использоваться. Выбор слишком большого числа соседей может переобучить модель к отдельным точкам набора данных обучения, в то время как слишком малое число соседей может быть не достаточно чувствительными для получения разумной результативности.
Практически у всех предсказательных моделей есть, по крайней мере, один настраиваемый параметр. Так как многие из этих параметров управляют сложностью модели, плохие варианты для значения могут привести к переобучению.
Есть разные подходы к поиску лучших параметров. Общий подход, который можно применить к почти любой модель, должен определить ряд значений кандидата, генерировать надежные оценки модели через значение кандидатов, а затем выбрать оптимальную модель.
Как только множество кандидатов значений параметра было выбрано, то следует получить правдоподобные оценки результативности модели.
При построении моделей доступны подходы, такие как генетические алгоритмы или симплексные методы поиска, которые могут найти оптимальные настраиваемые параметры.





