На нашем сайте вы можете читать онлайн «Предсказываем тренды. С Rattle и R в мир моделей классификации». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Просто о бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Предсказываем тренды. С Rattle и R в мир моделей классификации

Автор
Дата выхода
12 апреля 2019
Краткое содержание книги Предсказываем тренды. С Rattle и R в мир моделей классификации, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Предсказываем тренды. С Rattle и R в мир моделей классификации. Предисловие указано в том виде, в котором его написал автор (Александр Фоменко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга является практическим руководством по обучению моделей предсказаниям трендов на рынке Форекс. Берем исторические значения исходных данных — котировок, индикаторов, макроэкономических данных, и на них учим модель предсказывать «лонги-шорты». Данная книга является практическим применением пакета Rattle к рынку Форекс и терминалу МТ4 c комментариями идеологии моделей классификации и их оценки. Книга доступна новичкам, а также полезна опытным трейдерам в терминале МТ4.
Предсказываем тренды. С Rattle и R в мир моделей классификации читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Предсказываем тренды. С Rattle и R в мир моделей классификации без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Затем эти стандартные ошибки могут использоваться для оценки статистической значимости каждого предиктора в модели.
В то время как линейные модели типа регрессии легко поддаются толкованию, их использование может быть ограничено. Во-первых, эти модели состоятельны, если отношение между предикторами и откликом движется вдоль гиперплоскости. Например, при одном предикторе модель будет состоятельной, если отношение между предиктором и откликом двигалось вдоль прямой линии. С большим количеством предикторов отношение должно двигаться близко к плоской гиперплоскости.
4.3. Нелинейные регрессионные модели
Многие из линейных моделей могут быть адаптированы к нелинейным трендам в данных, вручную прибавляя параметры модели (например, квадраты параметров).
Есть многочисленные регрессионные модели, которые по своей сути не линейны. При использовании этих моделей точная форма нелинейности не должна быть известна явно или специфицироваться до обучения модели. Рассмотрим несколько таких моделей: нейронные сети, машины опорных векторов (SVM) и K-ближайшие соседи (KNN).
4.3.1. Нейронные сети
Нейронные сети – это мощные нелинейные методы регрессии, вдохновленные теориями о работе интеллекта. Как частные наименьшие квадраты (PLS), результат моделируется посредством многих не наблюдаемых переменных (названными скрытыми переменными или скрытыми модулями здесь). Эти скрытые модули – линейные комбинации исходных предикторов.
При обработке этой модели как нелинейной регрессионной модели обычно оптимизируются параметры для минимизации суммы квадратов остатков. Это может вызвать вычислительную проблему, связанную с оптимизацией (вспомним, что нет никаких ограничений на параметры этой комплексной нелинейной модели). Параметры обычно инициируются случайным значением, а затем используются специализированные алгоритмы для решения уравнения.





