Главная » Бизнес-книги » Алгоритм решения 10 проблемы Гильберта (сразу полная версия бесплатно доступна) Дмитрий Васильевич Паршаков читать онлайн полностью / Библиотека

Алгоритм решения 10 проблемы Гильберта

На нашем сайте вы можете читать онлайн «Алгоритм решения 10 проблемы Гильберта». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, Маркетинг, PR, реклама, Маркетинговые исследования и анализ. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Алгоритм решения 10 проблемы Гильберта, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Алгоритм решения 10 проблемы Гильберта. Предисловие указано в том виде, в котором его написал автор (Дмитрий Васильевич Паршаков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..

Алгоритм решения 10 проблемы Гильберта читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Алгоритм решения 10 проблемы Гильберта без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Алгоритм решения 10 проблемы Гильберта

Дмитрий Васильевич Паршаков

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..

Постановка задачи

В 1900г. на 1 Международном математическом конгрессе, известный математик Давид Гильберт[1] поставил перед математиками всего мира 23 задачи.

Эти задачи принято называть "Проблемами Гильберта".

Решением десятой проблемы Гильберта стало признание ее неразрешимости, доказанное советским математиком Ю.В.Матясевичем [2] в 1970г.

Доказательство неразрешимости Матиясевича признано как единственно допустимое, но возможно это не так.

Итак, для того, чтобы опровергнуть, либо подтвердить это доказательство нужно вначале напомнить задачу, определенную Д.

Гильбертом в 10-й проблеме.

«Пусть задано диофантово уравнение с произвольными неизвестными и целыми рациональными числовыми коэффициентами. Указать способ, при помощи которого возможно после конечного числа операций установить, разрешимо ли это уравнение в целых рациональных числах»

То есть нужно найти некий алгоритм, при помощи которого возможно находить натуральные (целочисленные) значения для произвольных неизвестных.

Решение проблемы

Самое известное уравнение Диофанта[3] это формула Пифагора[4].

Известны также так называемые «тройки Пифагора», целочисленные значения для неизвестных «a,b,c»

3,4,5; 5,12,13; 7,24,25 и т.д. Эти тройки имеют два сходства: первое – квадрат первого числа равен сумме двух других чисел, второе – разница между вторым и третьим числом равна 1. Следовательно, можно предположить, что это не случайные совпадения.

Исходя из этого, составим равенства

Теперь, используя все эти формулы, составим уравнения

Подставим эти уравнения в формулу Пифагора

Получилось равенство значений правой и левой сторон уравнения. Это можно считать доказательством существования алгоритма нахождения натуральных значений «пифагоровых троек».

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Алгоритм решения 10 проблемы Гильберта, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Дмитрий Васильевич Паршаков! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги