На нашем сайте вы можете читать онлайн «Машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Инновации в бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Машинное обучение

Автор
Дата выхода
18 июня 2023
Краткое содержание книги Машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга представляет комплексное руководство по применения МО в сфере бизнеса. Автор исследует различные аспекты МО и его роль в современных бизнес-процессах, а также предлагают практические рекомендации по использованию этих технологий для достижения конкурентных преимуществ и улучшения результатов. В книге рассматриваются алгоритмы МО и объясняется, как они могут быть применены в различных сферах бизнеса, включая маркетинг, финансы, производство, здравоохранение и другие. Автор предлагает практические примеры и сценарии использования МО и как оно может быть внедрено в организациях. Особое внимание уделяется вопросам предобработки и анализу данных. Методы работы с Big Data и подходы к обработке неструктурированных данных. Этические и юридические аспекты МО в бизнесе, включая вопросы конфиденциальности и защиты данных. Книга полезна для менеджеров, аналитиков, предпринимателей и всех, кто заинтересован в использовании МО для оптимизации бизнес-процессов и принятия обоснованных решений.
Машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
sort(key=lambda x: x[1], reverse=True)
# Выбор топ-N наиболее похожих пользователей
top_similar_users = [similarity[0] for similarity in similarities[:num_recommendations]]
# Получение рекомендаций на основе оценок похожих пользователей
recommendations = np.zeros(num_movies)
for user in top_similar_users:
recommendations += ratings[user]
recommendations = np.where(ratings[user_id] == 0, recommendations, 0)
top_movies = np.argsort(recommendations)[::-1][:num_recommendations]
return top_movies
# Пример использования
user_id = 0
recommended_movies = recommend_movies(user_id, ratings)
print(f"Рекомендованные фильмы для пользователя {user_id}:")
for movie_id in recommended_movies:
print(f"Фильм {movie_id}")
```
В данном примере используется матрица оценок пользователей `ratings`, где каждая строка соответствует пользователю, а каждый столбец соответствует фильму.
Функция `compute_similarity` вычисляет схожесть пользователей на основе корреляции Пирсона. Она сравнивает оценки двух пользователей, игнорируя нулевые значения, и вычисляет коэффициент корреляции.
Функция `recommend_movies` принимает идентификатор пользователя и матрицу оценок в качестве входных данных. Она вычисляет схожесть пользователя с остальными пользователями, выбирает топ-N наиболее похожих пользователей и выдает рекомендации на основе их оценок.
Пример использования демонстрирует, как получить рекомендации фильмов для определенного пользователя. Результатом программы является список идентификаторов фильмов, которые рекомендуется пользователю с указанным идентификатором.
Заметьте, что в данном примере использована простая реализация коллаборативной фильтрации. В реальных приложениях рекомендательных систем может потребоваться более сложные алгоритмы и обработка больших объемов данных.
Пример более сложной реализации коллаборативной фильтрации с использованием алгоритма Singular Value Decomposition (SVD) для рекомендаций фильмов:
import numpy as np
from scipy.sparse import csr_matrix
from scipy.sparse.linalg import svds
# Пример матрицы оценок пользователей
ratings = np.array([
[5.0, 4.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 4.0, 0.0, 5.0, 0.0],
[0.0, 0.0, 0.0, 2.0, 4.0, 5.0],
[4.0, 0.0, 0.0, 0.0, 0.0, 4.











