На нашем сайте вы можете читать онлайн «Машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Инновации в бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Машинное обучение

Автор
Дата выхода
18 июня 2023
Краткое содержание книги Машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга представляет комплексное руководство по применения МО в сфере бизнеса. Автор исследует различные аспекты МО и его роль в современных бизнес-процессах, а также предлагают практические рекомендации по использованию этих технологий для достижения конкурентных преимуществ и улучшения результатов. В книге рассматриваются алгоритмы МО и объясняется, как они могут быть применены в различных сферах бизнеса, включая маркетинг, финансы, производство, здравоохранение и другие. Автор предлагает практические примеры и сценарии использования МО и как оно может быть внедрено в организациях. Особое внимание уделяется вопросам предобработки и анализу данных. Методы работы с Big Data и подходы к обработке неструктурированных данных. Этические и юридические аспекты МО в бизнесе, включая вопросы конфиденциальности и защиты данных. Книга полезна для менеджеров, аналитиков, предпринимателей и всех, кто заинтересован в использовании МО для оптимизации бизнес-процессов и принятия обоснованных решений.
Машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Большие данные – наборы данных, которые характеризуются объемом, разнообразием и скоростью обновления, требующие специальных подходов и инструментов для их анализа и обработки.
Параметры модели – внутренние настраиваемые переменные, которые определяют ее поведение и способность предсказывать выходные значения. При обучении модели параметры настраиваются таким образом, чтобы минимизировать ошибку предсказания.
Функция потерь – математическая функция, которая измеряет расхождение между предсказанными и фактическими значениями модели.
Градиентный спуск – метод оптимизации, используемый для настройки параметров модели путем поиска оптимальных значений, исходя из градиента функции потерь. Градиентный спуск позволяет модели постепенно приближаться к минимуму функции потерь.
Регрессия – задача машинного обучения, которая связана с предсказанием непрерывных выходных значений на основе входных данных. Например, регрессионная модель может прогнозировать цену недвижимости на основе ее характеристик.
Классификация – задача машинного обучения, которая заключается в присвоении входным данным определенных категорий или классов. Классификационная модель может, например, определять, является ли электронное письмо спамом или не спамом.
Нейронные сети – модели машинного обучения, которые состоят из искусственных нейронов, объединенных в слои. Нейронные сети способны обрабатывать сложные входные данные и выявлять скрытые закономерности.
Сверточные нейронные сети – специализированный тип нейронных сетей, которые эффективно работают с входными данными в виде изображений. Они используют операцию свертки для извлечения локальных признаков из изображений и позволяют достигать высокой точности в задачах компьютерного зрения.
Рекуррентные нейронные сети – тип нейронных сетей, которые обладают памятью и могут обрабатывать последовательные данные, сохраняя информацию о предыдущих состояниях.
Безопасность и этика в машинном обучении – область, которая изучает вопросы связанные с надежностью, прозрачностью и справедливостью моделей машинного обучения. Включает в себя вопросы конфиденциальности данных, предвзятости моделей и этического использования искусственного интеллекта.











