На нашем сайте вы можете читать онлайн «Общая теория статистики: конспект лекции». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, Экономика, Книги по экономике. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Общая теория статистики: конспект лекции

Автор
Дата выхода
15 апреля 2009
Краткое содержание книги Общая теория статистики: конспект лекции, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Общая теория статистики: конспект лекции. Предисловие указано в том виде, в котором его написал автор (Нина Владимировна Коник) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования.Доступность и краткость изложения позволяют быстро и легко получить основные знания по предмету, подготовиться и успешно сдать зачет и экзамен.Рассматриваются общие вопросы теории статистики, методы группировок, относительных и средних величин, показатели вариаций, корреляционный и динамический анализ, экономические индексы применительно к решению управленческих задач в коммерческой деятельности на рынке товаров и услуг, экономическо-математические методы в статистических исследованиях. Для студентов экономических вузов и колледжей, а также тех, кто самостоятельно изучает данный предмет.
Общая теория статистики: конспект лекции читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Общая теория статистики: конспект лекции без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Исследуемые на практике социально-экономические явления весьма многообразны, поэтому охватить все явления сложно и порой вообще нельзя. Исследователь вынужден изучать только часть статистической совокупности, а выводы делать по всей совокупности. В таких ситуациях важнейшим требованием является обоснованный отбор той части совокупности, по которой исследуются признаки. Эта часть должна отображать основные свойства, явления и быть типичной. В реальности в исследуемых явлениях и процессах могут одновременно взаимодействовать несколько совокупностей.
Признаком единицы совокупности называют ее характерную черту, конкретное свойство, особенность, качество, которое может быть наблюдаемо и измерено. Совокупность, изучаемая во времени или в пространстве, обязана быть сопоставима. Следовательно, на признаки единиц совокупности накладывается требование их сопоставимости и единообразия. Для этого необходимо использовать, например, единые стоимостные оценки.
Требование однородности статистической совокупности означает выбор критерия, по которому та или иная единица относится к изучаемой совокупности.
Присутствие вариации у единиц совокупности обозначает, что их признаки могут получать всевозможные значения или видоизменения у некоторых единиц совокупности.
Признаки делятся на атрибутивные и количественные. Признак называется атрибутивным или качественным, если он выражается смысловым понятием, например пол человека или его принадлежность к той либо иной социальной группе. Внутри они подразделяются на номинальные и порядковые.
Признак называют количественным, если он выражен числом.





