На нашем сайте вы можете читать онлайн «Финансовая математика. Учебник по финансовому анализу малого бизнеса для кредитных специалистов». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Словари, справочники, Руководства. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Финансовая математика. Учебник по финансовому анализу малого бизнеса для кредитных специалистов

Автор
Дата выхода
27 октября 2019
Краткое содержание книги Финансовая математика. Учебник по финансовому анализу малого бизнеса для кредитных специалистов, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Финансовая математика. Учебник по финансовому анализу малого бизнеса для кредитных специалистов. Предисловие указано в том виде, в котором его написал автор (Олег Иванов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
После изучения учебника Финансовая математика Вы будете — знать различия простых и сложных процентов — уметь самостоятельно строить графики погашения кредитов — знать основные формы погашения кредитов, их отличительные особенности — уметь рассчитывать аннуитетный взнос на калькуляторе — понимать правила начисления пени и проводить их самостоятельный расчет — знать порядок зачисления взносов при просрочке Учебник содержит примеры и задачи, максимально приближенные к работе кредитного специалиста
Финансовая математика. Учебник по финансовому анализу малого бизнеса для кредитных специалистов читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Финансовая математика. Учебник по финансовому анализу малого бизнеса для кредитных специалистов без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
По окончании срока депозита, Банк предложил пролонгацию всей суммы вклада на новых условиях еще на 2 года с увеличением ставки на 2%.
Определим, какая сумма будет на депозите по окончании всего срока.
Решение:
Sn = 40 000 х [1 + (1 х 0,09 +2 х 0,11)] = 52 400 рублей.
1.4. Сложные проценты
Начисление сложного процента основано на том, что в определенный момент начисленные проценты прибавляются к сумме вклада, т.е. сумма на счету увеличивается, и в следующем периоде проценты начисляются уже на большую сумму (процент на процент).
Возьмем в качестве примера уже знакомого нам клиента, который выбирает себе самый доходный вклад. Как и в примере с простыми процентами в первый год, клиент вложил 100 рублей под 10% годовых. Вспоминая формулу расчета простых процентов, отразим в цифрах данную ситуацию:
100 х (1+10%) = 110
На второй год клиент решил вложить уже имеющиеся 110 рублей под те же 10% годовых. По известной уже формуле данная ситуация выглядела бы так:
110 х (1+10%)
Вместо 110 вставим наш предыдущий расчет, и у нас получится следующее:
100 х (1+10%) х (1+10%) = 121
На третий год произошла аналогичная ситуация, клиент вложил весь доход, полученный за предыдущие годы, т.
100 х (1+10%) х (1+10%) х (1+10%) = 133,1
Если мы будем считать вложения клиента за следующие годы, то ситуация у нас будет повторяться.
Теперь заменим рубли на S
, 10% на i и будем выражать проценты в долях. Годы заменим на n, и обозначим сумму вклада с процентами через определенное количество лет как S
. Тогда получим:
Рассмотрим эффект, который получается от долгосрочных вложений при использовании простых и сложных процентов.
Графически это будет выглядеть так:
Как видно из рисунка, при краткосрочных вложениях начисление по простым процентам, то есть без реинвестирования накопленных средств, предпочтительнее, чем по сложным процентам. При сроке в один год разница отсутствует. Но при долгосрочных инвестициях сумма, рассчитанная по сложным процентам, значительно выше, чем по простым.











