На нашем сайте вы можете читать онлайн «Искусственный интеллект, аналитика и новые технологии». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Инновации в бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Искусственный интеллект, аналитика и новые технологии

Дата выхода
19 октября 2021
Краткое содержание книги Искусственный интеллект, аналитика и новые технологии, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект, аналитика и новые технологии. Предисловие указано в том виде, в котором его написал автор (Harvard Business Review (HBR)) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Harvard Business Review – ведущий деловой журнал с многолетней историей. В новой книге серии «Harvard Business Review: 10 лучших статей» собраны самые актуальные статьи о применении в бизнесе новых технологий – от коммерческих дронов до универсальных платформ искусственного интеллекта. Вы также узнаете, как анализ данных улучшает потребительский опыт в ритейле, как маркетинговые стратегии меняются с появлением ИИ-ассистентов, как внедрять блокчейн-инфраструктуру и почему аддитивная технология промышленной 3D-печати в ближайшее время изменит производственные бизнес-модели. Этот сборник поможет предпринимателям, собственникам бизнеса и руководителям разобраться, в каком направлении развиваются современные технологии и какую пользу можно извлечь из них уже сейчас.
Искусственный интеллект, аналитика и новые технологии читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект, аналитика и новые технологии без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Процесс
Чтобы получить максимальную отдачу от ИИ, компании должны понимать, какие технологии соответствуют типам их задач, создавать портфель приоритетных проектов, основанный на потребностях бизнеса, и разрабатывать планы по развертыванию ИИ для всего бизнеса.
Выгоды от ИИ для бизнеса
Мы опросили 250 руководителей компаний, которые уже используют когнитивные технологии, чтобы узнать их цели в отношении ИИ. Более половины респондентов заявили, что их основная цель – улучшение существующих продуктов.
В NASA из-за нехватки средств инициировали запуск четырех пилотных RPA-проектов в области кредиторской и дебиторской задолженности, HR и расходов на ИТ – всем этим управляет центр общих служб агентства. Пилотные проекты показали себя хорошо – например, в отделе кадров 86 % операций прошли без участия человека – и были внедрены во всей организации.
Напрашивается предположение, что RPA лишит людей работы. Но в рамках 71 RPA-проекта, которые мы рассмотрели (47 % от общего их числа), замена роботами сотрудников не ставилась как цель и не стала результатом. Лишь несколько проектов привели к сокращениям, да и то в основном из-за привлечения внешних трудовых ресурсов.
Проблемы ИИ
Руководители в нашем исследовании отметили несколько факторов (начиная от интеграции до нехватки квалификации), которые могут приостановить или свести на нет ИИ-инициативы.
Когнитивное прогнозирование
Второй наиболее распространенный тип проектов в нашем исследовании (38 % от общего числа) основан на алгоритмах обнаружения закономерностей в огромных массивах данных и интерпретации их значений – что-то вроде аналитического реслинга.











