На нашем сайте вы можете читать онлайн «7 секретов нейронных сетей. Или моделирование разума ИИ». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, О бизнесе популярно, Просто о бизнесе. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
7 секретов нейронных сетей. Или моделирование разума ИИ

Автор
Дата выхода
23 августа 2023
Краткое содержание книги 7 секретов нейронных сетей. Или моделирование разума ИИ, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению 7 секретов нейронных сетей. Или моделирование разума ИИ. Предисловие указано в том виде, в котором его написал автор (Руслан Акст) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Эта книга — Ваш ключ к познанию тайн и глубин искусственного интеллекта. Погрузитесь в ее страницы, и они затащат вас в захватывающее путешествие через семь уникальных секретов машинного обучения. Откройте для себя великие возможности нейронных сетей, которые ждут своего исследователя. Почувствуйте, как становитесь настоящим экспертом в этой захватывающей теме. Настоящий кладезь примеров из реальной жизни оживит сложные концепции и превратит их в понятные и доступные образы.
7 секретов нейронных сетей. Или моделирование разума ИИ читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу 7 секретов нейронных сетей. Или моделирование разума ИИ без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
В нашем примере модель учиться распознавать характеристики и признаки на изображениях, которые делают его изображением собаки или кошки.
Больше того, датасеты играют ключевую роль не только в обучении модели, но и в ее оценке. Обычно датасет разделяется на две или три части: обучающую выборку, валидационную (или проверочную) выборку и тестовую выборку.
Модель обучается на обучающей выборке, настраивается с помощью валидационной выборки и проверяется на тестовой выборке. Это позволяет убедиться, что модель обобщает извлеченные из данных закономерности, признаки, а не просто запоминает ответы на конкретные примеры.
Вы скажите что определить кошка или собака просто, тогда давайте рассмотрим пример определения марки авто нейронкой и что для неё значит иметь правильную DataSet базу.
Представим, что у нас есть задача – обучить нейронную сеть отличать на фотографиях автомобили Mercedes от автомобилей BMW. Да, нейронные сети способны на это, и весьма успешно!
Мы начинаем с создания датасета.
Сколько фотографий нам нужно? Чем больше, тем лучше – больше данных позволит модели обнаружить больше нюансов и деталей. Какое качество этих фотографий?
Важно, чтобы они были достаточно четкими и детализированными, чтобы модель могла увидеть все отличительные особенности автомобилей. Что насчет цвета?
Если наши фотографии включают в себя автомобили разных цветов, модель сможет лучше понять, что цвет кузова не влияет на марку автомобиля.
Теперь у нас есть датасет, и мы готовы начать обучение. Наша нейронная сеть, можно сказать, работает как серия фильтров, каждый из которых «вылавливает» определенные характеристики изображений. Первый слой может улавливать простые вещи, например, границы и контуры объектов.
Второй слой, работая с информацией от первого, может начать распознавать более сложные вещи, такие как формы и узоры.
Третий слой может увидеть еще более сложные детали – например, форму логотипа на решетке радиатора.
В конце концов, последний слой нашей нейронной сети получает информацию от всех предыдущих слоев и делает окончательное предсказание: это Mercedes или BMW.
Если он правильно угадывает на большинстве примеров в нашем датасете, мы можем сказать, что наша модель обучилась успешно.











