На нашем сайте вы можете читать онлайн «Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Бизнес-книги, Корпоративная культура. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности

Автор
Дата выхода
10 ноября 2020
Краткое содержание книги Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности. Предисловие указано в том виде, в котором его написал автор (Томас Дэвенпорт) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Ажиотаж вокруг искусственного интеллекта и его применения в классическом бизнесе не утихает, но многие компании до сих пор не понимают, какую реальную выгоду принесет им внедрение новых технологий в их бизнес-процессы.
Эксперт в области аналитики и больших данных, преподаватель в Гарвардской школе бизнеса Томас Дэвенпорт в своей книге покажет, как можно эффективно интегрировать ИИ и когнитивные технологии в текущую бизнес-стратегию предприятия, чтобы сделать продукты привлекательнее, процессы совершеннее, а компанию успешнее.
Он подробно рассматривает преимущества и сложности внедрения различных видов технологий: статистическое машинное обучение, нейронные сети, глубокое обучение, обработку естественного языка, экспертные системы на основе правил, роботов и роботизированную автоматизацию процессов. И приводит примеры как успешного, так и неудачного использования ИИ в разных компаниях: Amazon, Google, Facebook, GlaxoSmithKline, Uber, GE, цифровом банке DBS и др.
Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Таким образом, хотя мы и разработали пилотного робота-советника, он был вдвое менее эффективен и продуктивен, чем средний менеджер по работе с клиентами. Мы извлекли из этого урок и остановили проект на ранней стадии.
Гледхилл и его коллеги продолжают оценивать новые технологии, которые могут быть полезны для совершенствования интеллектуального робота-советника, но пока они ничего не нашли. Однако по-прежнему верят в ценность ИИ. Они сосредоточили внимание на важных, но несколько менее масштабных проблемах своего бизнеса, которые могут быть хотя бы частично решены с помощью когнитивных технологий.
Проекты ИИ, реализуемые DBS, охватывают широкий спектр областей, но большинство из них касается операционных процессов. Например, банк использует модели машинного обучения для прогнозирования необходимости пополнения банкоматов наличными. Если раньше наличные в банкомате заканчивались в среднем раз в три месяца, то теперь этот показатель составляет раз в 55 лет, а количество поездок для пополнения банкоматов сократилось более чем на 10 %.
В сфере кадров DBS прогнозирует отток своих продажников. На основе ряда факторов, выявленных моделями машинного обучения (включая время отпуска, количество больничных, а также скорость ответов на электронные письма), банк может с 85 %-ной вероятностью предсказывать, уволится ли кто-либо из сотрудников, за три месяца до увольнения.
Банк также использует ИИ, чтобы выявлять мошенничество в области торговли ценными бумагами, строить алгоритмические модели кредитования, управлять чат-ботами в службе поддержки клиентов, а также выполнять ряд других задач. Особенно большую роль ИИ играет в исключительно цифровом банке DBS в Индии, где работает на 90 % меньше сотрудников, чем в обычном банке. Во всем банке взаимодействия клиентов с ИИ на 15 % снижают количество звонков в службу поддержки.
Гледхилл прокомментировал изменение фокуса ИИ в DBS:
Первоначальный робот-советник был нашим самым амбициозным проектом. Он пошел не по плану, потому что мы хотели получить продукт, намного опережающий время. Однако мы извлекли уроки из этого первого проекта и не отступились от ИИ. Мы идем по пути наименьшего сопротивления, используя ИИ для оптимизации бизнес-процессов в банке, и добиваемся огромных успехов.





