Главная » Знания и навыки » Нейросети практика (сразу полная версия бесплатно доступна) Джейд Картер читать онлайн полностью / Библиотека

Нейросети практика

На нашем сайте вы можете читать онлайн «Нейросети практика». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, ОС и сети. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

05 июля 2023

Краткое содержание книги Нейросети практика, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети практика. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Книга предлагает практическое погружение в мир нейросетей, начиная с основных концепций и методов обучения и до сложных алгоритмов и техник. Читателю предоставляются понятные объяснения и примеры, а также многочисленные практические задания и проекты для непосредственного применения знаний. Вы научитесь обрабатывать и анализировать данные, решать задачи классификации, регрессии и генерации, а также создавать собственные модели нейросетей. "Нейросети практика" - это источник вдохновения и практического опыта, необходимый для приведения идей к жизни с помощью нейросетей.

Нейросети практика читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети практика без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

linear_model import LinearRegression

# Загрузка данных

X, y = load_data()

# Создание модели

model = LinearRegression()

# Выполнение перекрестной проверки

scores = cross_val_score(model, X, y, cv=5) # 5 фолдов

# Вывод результатов

print("Оценки производительности модели:", scores)

print("Средняя оценка производительности:", scores.mean())

```

В этом примере данные разделены на 5 фолдов (поднаборов). Модель линейной регрессии используется для обучения и оценки производительности на каждом фолде.

Функция `cross_val_score` из библиотеки scikit-learn выполняет перекрестную проверку, вычисляя оценки производительности для каждого фолда. Результаты печатаются, включая оценку производительности для каждого фолда и среднюю оценку производительности по всем фолдам.

3. Временное разделение:

```python

# Загрузка временных данных

X, y = load_temporal_data()

# Разделение данных по времени

train_size = int(0.7 * len(X))

val_size = int(0.

15 * len(X))

X_train, y_train = X[:train_size], y[:train_size]

X_val, y

_val = X[train_size:train_size+val_size], y[train_size:train_size+val_size]

X_test, y_test = X[train_size+val_size:], y[train_size+val_size:]

# Проверка размеров наборов данных

print("Размер обучающего набора:", X_train.shape)

print("Размер проверочного набора:", X_val.shape)

print("Размер тестового набора:", X_test.shape)

```

В этом примере данные разделены на обучающий (70%), проверочный (15%) и тестовый (оставшиеся данные) наборы на основе времени.

Сначала определяется размер каждого набора, и затем данные разделяются в соответствии с этими размерами. Это особенно полезно для временных рядов, где более ранние данные используются для обучения, следующие по времени данные – для проверки и настройки гиперпараметров, а самые новые данные – для тестирования производительности модели на новых, ранее не виденных данных.

В каждом из этих примеров данные разделяются на обучающий, проверочный и тестовый наборы, чтобы обеспечить правильную оценку и настройку модели.

При разделении данных важно сохранять баланс между классами (если речь идет о задаче классификации) и убедиться, что разделение отражает реальное распределение данных.

6. Обработка пропущенных значений:

Верно, обработка пропущенных значений является важным шагом в предобработке данных для нейронных сетей.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Нейросети практика, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Джейд Картер! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги