На нашем сайте вы можете читать онлайн «Нейросети практика». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, ОС и сети. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейросети практика

Автор
Дата выхода
05 июля 2023
Краткое содержание книги Нейросети практика, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети практика. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга предлагает практическое погружение в мир нейросетей, начиная с основных концепций и методов обучения и до сложных алгоритмов и техник. Читателю предоставляются понятные объяснения и примеры, а также многочисленные практические задания и проекты для непосредственного применения знаний. Вы научитесь обрабатывать и анализировать данные, решать задачи классификации, регрессии и генерации, а также создавать собственные модели нейросетей. "Нейросети практика" - это источник вдохновения и практического опыта, необходимый для приведения идей к жизни с помощью нейросетей.
Нейросети практика читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети практика без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Входные данные предполагаются 3-канальными изображениями размером 64x64 пикселя. Сверточный слой применяется к входным данным, и результат сохраняется в переменной `output`.
2. Пример пулинг слоя (Pooling Layer):
```python
import tensorflow as tf
# Создание пулинг слоя с размером пула 2x2
pooling_layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))
# Применение пулинг слоя к входным данным
output = pooling_layer(input_data)
```
Описание: В данном примере создается пулинг слой с размером пула 2x2.
3. Пример полносвязного слоя (Fully Connected Layer):
```python
import tensorflow as tf
# Создание полносвязного слоя с 256 нейронами
dense_layer = tf.keras.layers.Dense(units=256, activation='relu')
# Применение полносвязного слоя к входным данным
output = dense_layer(input_data)
```
Описание: В данном примере создается полносвязный слой с 256 нейронами.
4. Пример функции активации (Activation Function):
```python
import tensorflow as tf
# Пример применения функции активации ReLU
output = tf.
# Пример применения функции активации softmax
output = tf.keras.activations.softmax(input_data)
```
Описание: В данном примере приведены два примера применения функций активации. Первый пример демонстрирует применение функции активации ReLU к входным данным `input_data`. Функция активации ReLU применяет нелинейное преобразование, оставляя неотрицательные значения без изменения, а отрицательные значения обнуляются.
Обратите внимание, что в приведенных примерах предполагается использование библиотеки TensorFlow для создания и обучения нейронных сетей.











