На нашем сайте вы можете читать онлайн «Нейросети начало». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейросети начало

Автор
Дата выхода
26 апреля 2023
Краткое содержание книги Нейросети начало, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети начало. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга является отличным ресурсом для тех, кто хочет познакомиться с основами нейросетей и их применением в жизни. В книге подробно объясняется, что такое нейрон и как он работает в нейросети, что такое веса и смещения, как нейрон принимает решения и как строится нейросеть. Кроме того, книга охватывает такие темы, как обучение нейросетей, основные типы нейросетей (полносвязные, сверточные и рекуррентные), и их применение в задачах классификации, регрессии и кластеризации. Книга также рассматривает продвинутые темы в нейросетях, такие как глубокое обучение, автоэнкодеры и генеративные модели. Автор подробно объясняют, как использовать эти методы в нейросетях и как они могут помочь в решении сложных задач. Независимо от того, являетесь ли вы новичком в области нейросетей или же уже имеете опыт работы с ними, эта книга станет полезным ресурсом для расширения знаний и навыков. Она предоставляет понятную и доступную информацию о технологии, которая становится все более важной в нашей жизни.
Нейросети начало читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети начало без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Для проверки точности модели можно использовать тестовый набор изображений с известными метками (т.е. правильными ответами) и сравнивать предсказания модели с этими метками. Чем выше точность модели на тестовых данных, тем более успешно она справляется с задачей распознавания цифр.
После обучения модели ее можно использовать для распознавания цифр на новых изображениях, например, в приложении для считывания рукописных цифр на почтовых индексах, на банковских чеках или в других сферах, где требуется автоматическое распознавание цифр.
2. Пример кода «Автоматическое распознавание речи».
Для реализации второго примера в среде TensorFlow нам понадобится набор данных CIFAR-10, который можно загрузить с помощью встроенной функции TensorFlow.
Набор CIFAR-10 содержит 60000 цветных изображений размером 32х32 пикселя, разделенных на 10 классов. Для обучения нейросети мы будем использовать 50000 изображений, а для тестирования – оставшиеся 10000.
Вот как выглядит реализация второго примера в TensorFlow:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# Определение архитектуры нейросети
model = keras.Sequential(
[
layers.LSTM(128, input_shape=(None, 13)),
layers.Dense(64, activation="relu"),
layers.Dense(32, activation="relu"),
layers.Dense(10, activation="softmax"),
]
)
# Компиляция модели
model.
optimizer=keras.optimizers.Adam(learning_rate=0.001),
loss=keras.losses.CategoricalCrossentropy(),
metrics=["accuracy"],
)
# Загрузка звукового файла
audio_file = tf.io.read_file("audio.wav")
audio, _ = tf.audio.decode_wav(audio_file)
audio = tf.squeeze(audio, axis=-1)
audio = tf.cast(audio, tf.float32)
# Разбивка на фрагменты
frame_length = 640
frame_step = 320
audio_length = tf.
num_frames = tf.cast(tf.math.ceil(audio_length / frame_step), tf.int32)
padding_length = num_frames * frame_step – audio_length
audio = tf.pad(audio, [[0, padding_length]])
audio = tf.reshape(audio, [num_frames, frame_length])
# Извлечение признаков MFCC
mfccs = tf.signal.mfccs_from_log_mel_spectrograms(
tf.math.log(tf.abs(tf.signal.stft(audio))),
audio.











