На нашем сайте вы можете читать онлайн «Нейросети. Обработка естественного языка». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программы. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейросети. Обработка естественного языка

Автор
Дата выхода
22 сентября 2023
Краткое содержание книги Нейросети. Обработка естественного языка, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети. Обработка естественного языка. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга представляет собой исчерпывающее руководство по применению нейросетей в различных областях анализа текста. С этой книгой читатели отправятся в увлекательное путешествие по миру искусственного интеллекта, где они узнают о бесконечных возможностях, которые предоставляют нейронные сети.
Нейросети. Обработка естественного языка читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети. Обработка естественного языка без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
На этом этапе RNN может учитывать, что "Сегодняшняя" и "погода" идут перед "очень" и "хорошая", и что они могут влиять на общий смысл предложения.
3. Агрегация информации:
После обработки всех слов в предложении скрытое состояние будет содержать информацию, учитывающую контекст всего предложения. Это состояние может отражать, что весь контекст в данном предложении указывает на положительную тональность.
4. Выдача результата:
Наконец, RNN может использовать это скрытое состояние для определения тональности предложения, и, например, классифицировать его как "положительное".
Исходное состояние скрытого состояния (шаг 1) и его изменение по мере обработки каждого слова (шаги 2 и 3) – это ключевые элементы работы RNN в обработке текстовых данных. Это позволяет модели учитывать зависимости между словами и контекст, что делает RNN мощными инструментами в NLP.
Затем, чтобы понять, как работают более продвинутые архитектуры, такие как LSTM и GRU, можно представить их как улучшенные версии RNN с более сложными механизмами обновления скрытого состояния, которые позволяют им эффективнее учитывать долгосрочные зависимости в данных.
Для реализации рекуррентной нейронной сети (RNN) в коде на Python с использованием библиотеки глубокого обучения TensorFlow, можно следовать следующему шаблону. В данном примере будет использован простой пример классификации текста с использованием RNN:
```python
import tensorflow as tf
from tensorflow.keras.layers import Embedding, SimpleRNN, Dense
from tensorflow.
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
# Пример текстовых данных для обучения
texts = ["Сегодняшняя погода очень хорошая.", "Дождь идет весь день.", "Ветер сильный, но солнце светит."]
labels = [1, 0, 1] # 1 – положительное, 0 – отрицательное
# Создание токенизатора и преобразование текста в последовательности чисел
tokenizer = Tokenizer()
tokenizer.
sequences = tokenizer.texts_to_sequences(texts)
# Паддинг последовательностей для обеспечения одинаковой длины
max_sequence_length = max([len(seq) for seq in sequences])
sequences = pad_sequences(sequences, maxlen=max_sequence_length)
# Создание модели RNN
model = Sequential()
model.add(Embedding(input_dim=len(tokenizer.word_index) + 1, output_dim=64, input_length=max_sequence_length))
model.add(SimpleRNN(32))
model.











