Главная » Знания и навыки » Нейросети. Обработка естественного языка (сразу полная версия бесплатно доступна) Джейд Картер читать онлайн полностью / Библиотека

Нейросети. Обработка естественного языка

На нашем сайте вы можете читать онлайн «Нейросети. Обработка естественного языка». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программы. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

22 сентября 2023

Краткое содержание книги Нейросети. Обработка естественного языка, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети. Обработка естественного языка. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Книга представляет собой исчерпывающее руководство по применению нейросетей в различных областях анализа текста. С этой книгой читатели отправятся в увлекательное путешествие по миру искусственного интеллекта, где они узнают о бесконечных возможностях, которые предоставляют нейронные сети.

Нейросети. Обработка естественного языка читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети. Обработка естественного языка без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Из этой визуализации видно, как модель RNN пытается аппроксимировать исходный временной ряд и делает прогнозы на основе предыдущих значений. Оранжевая линия отображает прогнозируемую часть временного ряда на будущее.

Завершив обучение и сделав прогнозы, вы можете визуально оценить, насколько хорошо модель справилась с задачей прогнозирования временного ряда.

В этом примере обучаемые параметры модели – это веса и смещения в слое RNN и в слое Dense. Модель настраивает эти параметры в процессе обучения, чтобы минимизировать ошибку прогноза временного ряда.

Обучаемые параметры позволяют модели адаптироваться к данным и находить закономерности, что делает их мощным инструментом для разнообразных задач машинного обучения.

Однако RNN имеют несколько ограничений, из которых наиболее значимой является проблема затуханияградиентов (vanishing gradients). Эта проблема заключается в том, что при обучении RNN градиенты (производные функции потерь по параметрам сети) могут становиться очень маленькими, особенно на длинных последовательностях.

Это затрудняет обучение, поскольку сеть может "забывать" информацию о давно прошедших событиях в последовательности.

Для решения проблемы затухания градиентов были разработаны более продвинутые архитектуры RNN:

Long Short-Term Memory (LSTM):

Long Short-Term Memory (LSTM) – это одна из наиболее популярных архитектур в области рекуррентных нейронных сетей (RNN). Она разработана для работы с последовательными данными и способна эффективно учитывать долгосрочные зависимости в данных.

Давайте подробнее разберем, как работает LSTM:

Специальные ячейки LSTM: Основная особенность LSTM заключается в использовании специальных ячеек памяти, которые позволяют сохранять и извлекать информацию из прошлых состояний. Эти ячейки состоят из нескольких внутренних гейтов (гейт – это устройство, которое решает, какая информация должна быть сохранена и какая должна быть проигнорирована).

Забывающий гейт (Forget Gate): Этот гейт определяет, какая информация из прошлых состояний следует забыть или удалить из памяти ячейки.

Он работает с текущим входом и предыдущим состоянием и выдает значение от 0 до 1 для каждой информации, которая указывает, следует ли ее забыть или сохранить.

Входной гейт (Input Gate): Этот гейт определяет, какая информация из текущего входа должна быть добавлена в память ячейки. Он также работает с текущим входом и предыдущим состоянием, и вычисляет, какие значения следует обновить.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Нейросети. Обработка естественного языка, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Джейд Картер! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги