На нашем сайте вы можете читать онлайн «Нейросети. Генерация изображений». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, ОС и сети. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Нейросети. Генерация изображений

Автор
Дата выхода
11 августа 2023
Краткое содержание книги Нейросети. Генерация изображений, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Нейросети. Генерация изображений. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В данной книге учитываются последние исследования и технологические достижения в области генеративных нейронных сетей. Автор предоставляет читателю практическое и глубокое понимание процесса создания нейросети для генерации изображений, а также вдохновляет на новые творческие подходы и исследования.
Нейросети. Генерация изображений читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Нейросети. Генерация изображений без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
– Если вы работаете с многоклассовыми данными, обратите внимание на баланс классов. Если одни классы сильно преобладают над другими, это может привести к несбалансированности модели. Постарайтесь собрать данные таким образом, чтобы каждый класс был достаточно представлен в обучающем наборе.
– Обязательно убедитесь, что у вас есть права на использование собранных данных, особенно если вы планируете использовать их для коммерческих целей или публикации результатов.
Правильная сборка и подготовка данных является важным этапом в обучении GAN и может существенно повлиять на качество и результаты модели.
2.2. Препроцессинг изображений: масштабирование, нормализация и другие техники
Препроцессинг изображений является важным этапом подготовки данных перед обучением генеративных нейронных сетей (GAN). Цель препроцессинга – привести данные в определенный формат, нормализовать их и обработать для улучшения производительности и сходимости модели.
1. Масштабирование (Rescaling):
Масштабирование – это процесс изменения масштаба изображений, чтобы они соответствовали определенному диапазону значений. Обычно изображения масштабируются к диапазону от 0 до 1 или от -1 до 1. Это делается для облегчения обучения модели, так как большие значения пикселей могут замедлить процесс обучения и ухудшить сходимость.
2. Нормализация (Normalization):
Нормализация – это процесс приведения значений пикселей изображений к некоторой стандартной шкале. Чаще всего используется нормализация по среднему значению и стандартному отклонению. Для этого каждый пиксель изображения вычитается из среднего значения пикселей и делится на стандартное отклонение всех пикселей в наборе данных.
3. Центрирование (Centering):
Центрирование – это процесс вычитания среднего значения всех пикселей из каждого пикселя изображения. Это приводит к тому, что среднее значение всех пикселей в изображении становится равным нулю. Центрирование также помогает уменьшить влияние смещения на обучение модели.
4.











