На нашем сайте вы можете читать онлайн «Искусственный интеллект. Машинное обучение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Искусственный интеллект. Машинное обучение

Автор
Дата выхода
19 марта 2024
Краткое содержание книги Искусственный интеллект. Машинное обучение, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Искусственный интеллект. Машинное обучение. Предисловие указано в том виде, в котором его написал автор (Джейд Картер) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Исследуйте мир машинного обучения с этой книгой, предназначенной для тех, кто стремится погрузиться в фундаментальные принципы и передовые методы этой динамично развивающейся области. От введения в основные концепции до глубокого погружения в продвинутые техники и приложения, каждая глава представляет собой комплексное исследование, подкрепленное практическими примерами и советами. Будучи ориентиром как для начинающих, так и для опытных практиков, данная книга поможет вам освоить ключевые навыки, необходимые для эффективного применения методов машинного обучения в реальных задачах.
Искусственный интеллект. Машинное обучение читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Искусственный интеллект. Машинное обучение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
На этом этапе необходимо учитывать характеристики данных, требуемую точность предсказаний, а также особенности самой задачи.
В случае с предсказанием цены недвижимости, мы можем рассмотреть несколько моделей машинного обучения, каждая из которых имеет свои преимущества и недостатки. Например, линейная регрессия может быть хорошим выбором, если данные демонстрируют линейные зависимости между признаками и целевой переменной. Случайный лес может быть предпочтительным в случае сложных нелинейных зависимостей и большого количества признаков.
Выбор модели также зависит от доступных ресурсов, таких как вычислительная мощность и объем данных. Например, нейронные сети могут потребовать больший объем вычислительных ресурсов для обучения и прогнозирования, чем более простые модели, такие как линейная регрессия.
Основная цель выбора подходящей модели – это создание модели, которая наилучшим образом соответствует характеристикам данных и требованиям задачи.
Выбор подходящей модели – это сложный процесс, который требует внимательного анализа данных и экспериментов с различными моделями для достижения оптимальных результатов в решении поставленной задачи машинного обучения.
4. Стремление к созданию математических моделей, извлекающих полезные знания и закономерности из данных:
Стремление к созданию математических моделей, которые способны извлекать полезные знания и закономерности из данных, является ключевым аспектом в области машинного обучения. Этот процесс начинается с тщательного анализа имеющихся данных и поиска в них паттернов, трендов и зависимостей, которые могут быть использованы для принятия решений или делания предсказаний.
Математические модели, используемые в машинном обучении, строятся на основе различных математических и статистических методов.











