Method of Estimating Plane Vulnerability Based on Damage of Survivors. Alexandria, VA: Center for Naval Analyses, repr., 1980, July, CRC 432.].
…можно вычислить нижний предел Q
. Мы предполагаем, что разность между значениями q
и q
находится в определенных пределах. Следовательно, можно вычислить верхний и нижний пределы Q
.
Предположим:
?
q
? q
? ?
q
где ?
< ?
< 1, таковы, что выполнено:
(A)
Точное решение слишком громоздко, но можно рассчитать приближенные значения верхнего и нижнего пределов Q
для i < n посредством следующей процедуры. В расчетах используется такой набор гипотетических данных:
Условие А удовлетворено, поскольку подстановка дает нам значение
что меньше, чем
1 – a
= 0,22.
НИЖНИЙ ПРЕДЕЛ Q
На первом этапе необходимо решить уравнение 66. Это подразумевает решение следующих четырех уравнений с положительными корнями q
, q
, q
, q
.
Надеюсь, приведенная мною страничка не стала для вас слишком большим испытанием.
Тем не менее, чтобы понять саму идею, лежавшую в основе озарения Вальда, нам не нужны никакие формальные выкладки. Выше я уже все объяснил, причем не прибегая к каким бы то ни было математическим обозначениям. Поэтому вопрос моего студента остается открытым. Где здесь математика? Разве мы не имеем дело просто со здравым смыслом?
Да, именно так. Математика – это и есть здравый смысл. Ведь на базовом уровне все вполне очевидно.
Как можно объяснить кому-то, что прибавление семи вещей к пяти вещам дает такой же результат, что и прибавление пяти вещей к семи вещам? Никак. Этот факт запечатлен в наших представлениях о сведении нескольких объектов в единое целое. Математики любят обозначать специальными терминами те явления, которые описывает наш здравый смысл. Вместо фразы: «Прибавление этого объекта к тому объекту – это то же самое, что прибавление того объекта к этому» – мы говорим: «Сложение коммутативно». А поскольку мы любим использовать символы, то записываем сказанное в таком виде:
при любых значениях a и b
a + b = b + a.
Несмотря на официальный вид этой формулы, мы говорим здесь о факте, который инстинктивно понимает каждый ребенок.
Немного другой случай – умножение. Формула выглядит почти так же:
при любых значениях a и b
a ? b = b ? a.
Как не ошибаться. Сила математического мышления (сразу полная версия бесплатно доступна) Джордан Элленберг читать онлайн полностью / Библиотека
Главная » Знания и навыки » Как не ошибаться. Сила математического мышления (сразу полная версия бесплатно доступна) Джордан Элленберг читать онлайн полностью / Библиотека
Как не ошибаться. Сила математического мышления
На нашем сайте вы можете читать онлайн «Как не ошибаться. Сила математического мышления». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Краткое содержание книги Как не ошибаться. Сила математического мышления, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Как не ошибаться. Сила математического мышления. Предисловие указано в том виде, в котором его написал автор (Джордан Элленберг) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.
Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.
На русском языке публикуется впервые.
Как не ошибаться. Сила математического мышления читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Как не ошибаться. Сила математического мышления без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Еще нет комментариев о книге Как не ошибаться. Сила математического мышления, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!
Другие книги автора
Понравилась эта книга? Познакомьтесь с другими произведениями автора Джордан Элленберг! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.