Главная » Знания и навыки » Машинное обучение. Погружение в технологию (сразу полная версия бесплатно доступна) Артем Демиденко читать онлайн полностью / Библиотека

Машинное обучение. Погружение в технологию

На нашем сайте вы можете читать онлайн «Машинное обучение. Погружение в технологию». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Дата выхода

03 июня 2023

Краткое содержание книги Машинное обучение. Погружение в технологию, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение. Погружение в технологию. Предисловие указано в том виде, в котором его написал автор (Артем Демиденко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Практическое руководство, предназначенное для всех, кто хочет войти в мир машинного обучения и освоить его основы. Авторы книги предлагают читателям увлекательное путешествие в эту захватывающую область, начиная с основных концепций и принципов машинного обучения и заканчивая практическими навыками построения и обучения моделей. Внутри книги читатели найдут понятные объяснения ключевых алгоритмов машинного обучения, таких как регрессия, классификация, кластеризация и глубокое обучение. Они узнают, как подготовить данные для обучения моделей, как выбрать и настроить подходящие алгоритмы, а также как оценивать и улучшать производительность моделей.

Машинное обучение. Погружение в технологию читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение. Погружение в технологию без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

      Классификация изображений: Модель обучается классифицировать изображения на определенные категории. Например, модель может определять, является ли изображение кошкой или собакой, определять виды растений или классифицировать объекты на дорожных сценах.

3.      Классификация текстов: Модель может классифицировать тексты на основе их содержания. Например, модель может определять, относится ли отзыв о продукте к положительному или отрицательному классу, классифицировать новостные статьи по темам или определять тональность текста.

4.      Классификация медицинских данных: Модель может использоваться для классификации медицинских данных, таких как изображения рентгена или снимки МРТ, для определения наличия определенных заболеваний или патологий.

5.      Классификация финансовых транзакций: Модель может классифицировать финансовые транзакции на основе их характеристик, чтобы обнаружить мошенническую активность или аномалии.

Для решения задач классификации используются различные алгоритмы и методы, включая логистическую регрессию, метод опорных векторов (SVM), решающие деревья, случайные леса, градиентный бустинг и нейронные сети.

Выбор конкретного метода зависит от характеристик данных, объема данных и требуемой точности классификации.

Задачи регрессии: в регрессионных задачах модель стремится предсказать непрерывные числовые значения. Например, модель может предсказывать стоимость недвижимости на основе ее характеристик, или прогнозировать спрос на товары на основе исторических данных.

Вот несколько примеров задач регрессии:

1.      Прогнозирование цен на недвижимость: Модель обучается на основе характеристик недвижимости, таких как размер, расположение, количество комнат и т. д., и предсказывает стоимость недвижимости. Это полезно для покупателей и продавцов недвижимости, агентов по недвижимости и оценщиков.

2.      Прогнозирование спроса на товары: Модель может использоваться для прогнозирования спроса на товары или услуги на основе исторических данных о продажах, ценах, маркетинговых активностях и других факторах.

Это помогает компаниям оптимизировать производство, планирование запасов и маркетинговые стратегии.

3.      Прогнозирование финансовых показателей: Модель может предсказывать финансовые показатели, такие как выручка, прибыль, акции или курс валюты, на основе исторических данных и других факторов, таких как экономические показатели, политические события и т. д.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Машинное обучение. Погружение в технологию, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Артем Демиденко! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги