На нашем сайте вы можете читать онлайн «Машинное обучение. Погружение в технологию». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Программирование. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Машинное обучение. Погружение в технологию

Автор
Дата выхода
03 июня 2023
Краткое содержание книги Машинное обучение. Погружение в технологию, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение. Погружение в технологию. Предисловие указано в том виде, в котором его написал автор (Артем Демиденко) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Практическое руководство, предназначенное для всех, кто хочет войти в мир машинного обучения и освоить его основы. Авторы книги предлагают читателям увлекательное путешествие в эту захватывающую область, начиная с основных концепций и принципов машинного обучения и заканчивая практическими навыками построения и обучения моделей. Внутри книги читатели найдут понятные объяснения ключевых алгоритмов машинного обучения, таких как регрессия, классификация, кластеризация и глубокое обучение. Они узнают, как подготовить данные для обучения моделей, как выбрать и настроить подходящие алгоритмы, а также как оценивать и улучшать производительность моделей.
Машинное обучение. Погружение в технологию читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение. Погружение в технологию без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Основная идея задач усиления заключается в том, что модель-агент обучается на основе проб и ошибок, пытаясь найти оптимальную стратегию действий для достижения максимальной награды. В процессе обучения модель получает информацию о текущем состоянии среды, выбирает действие, выполняет его, получает награду и переходит в новое состояние. Модель стремится улучшить свою стратегию, максимизируя суммарную награду, которую она получает в ходе взаимодействия со средой.
Задачи усиления широко применяются в различных областях, таких как управление роботами и автономными системами, разработка игр, оптимальное управление процессами и другие.
Основные алгоритмы и подходы в усилении включают Q-обучение, SARSA, Deep Q-Networks (DQN), Proximal Policy Optimization (PPO) и многие другие. Эти алгоритмы используются для моделирования взаимодействия агента со средой, оценки ценности действий, определения оптимальной стратегии и обновления параметров модели на основе полученной награды.
Задачи генерации: в этом типе задачи модель обучается генерировать новые данные, такие как изображения, звуки или тексты. Например, модель может генерировать реалистичные фотографии или синтезировать речь. Процесс генерации данных включает в себя обучение модели на большом объеме образцовых данных и последующую способность модели создавать новые примеры, которые соответствуют тем же характеристикам и структуре, что и исходные данные.
Примеры задач генерации включают в себя:
1. Генерация изображений: модель обучается создавать новые изображения, которые могут быть реалистичными фотографиями, абстрактными картинами или даже реалистичными лицами.
2. Генерация текста: модель обучается генерировать новые тексты, которые могут быть статьями, романами, поэзией или даже программным кодом.
3. Генерация звука: модель обучается генерировать новые аудиофайлы, которые могут быть речью, музыкой или звуковыми эффектами.
4. Генерация видео: модель обучается создавать новые видеофрагменты, которые могут быть анимациями, синтезированными сценами или даже виртуальной реальностью.











