На нашем сайте вы можете читать онлайн «Дьявольские простые числа, или Периодическая система натурального ряда». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Хобби, досуг, Хобби / увлечения. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Дьявольские простые числа, или Периодическая система натурального ряда

Автор
Дата выхода
27 июля 2023
Краткое содержание книги Дьявольские простые числа, или Периодическая система натурального ряда, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Дьявольские простые числа, или Периодическая система натурального ряда. Предисловие указано в том виде, в котором его написал автор (Анатолий Стор) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Схема для выявления любого простого числа до бесконечности, без помощи вычислительных машин. Наконец решена основная математическая задача в Теории простых чисел, поставленная древнегреческим математиком 2000 лет назад (около 200г. до н.э.) и которая называется «решетом Эратосфена». Общее решение этой задачи показал сам Эратосфен с помощью своей схемы, которая применена в этой работе и дала возможность выявить и разработать периодическую систему всего натурального ряда.
Дьявольские простые числа, или Периодическая система натурального ряда читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Дьявольские простые числа, или Периодическая система натурального ряда без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Дьявольские простые числа, или Периодическая система натурального ряда
Анатолий Стор
Схема для выявления любого простого числа до бесконечности, без помощи вычислительных машин.Наконец решена основная математическая задача в Теории простых чисел, поставленная древнегреческим математиком 2000 лет назад (около 200г. до н.э.) и которая называется «решетом Эратосфена».Общее решение этой задачи показал сам Эратосфен с помощью своей схемы, которая применена в этой работе и дала возможность выявить и разработать периодическую систему всего натурального ряда.
Анатолий Стор
Дьявольские простые числа, или Периодическая система натурального ряда
Как известно все натуральные целые числа, кроме единицы имеют по меньшей мере два делителя: единицу и само себя. Те из них, которые не имеют, никаких других делителей называются «простыми». Те числа, которые имеют еще и другие делители называются «составными». Единицу принято, не относить ни к простым ни к составным числам.
То, что простых чисел имеется бесконечное множество, было установлено еще в древности (Евклид 3 век до н.
Первое что может прийти в голову, – это делить данное число на все числа меньшее его. Но надо признать , что этот способ мало удовлетворителен. Некоторые энтузиасты – вычислители за последние 200 лет составили и издали много таблиц простых чисел. Одна из обширных таблиц является таблица Д.
В течение нескольких столетий шла погоня за простыми числами, и многие математики боролись за честь стать открывателями самого большого из всех известных простых чисел.
Основное направление решения задал французский монах Мерсенна (1588–1648г.г.), который начал вычислять простые числа по формуле М
=2
– 1, где р- другое простое число. Однако не все они оказались простыми.
М
= 2
–1 = 3 – простое
М
= 2
–1 = 5 – простое
М
= 2
–1 = 31 – простое
М
= 2
–1 = 127 – простое
М
= 2
–1 = 2047 = 23*89 – составное
Самостоятельно вычислил простое число М
Леонардо Эйлер (1707–1783 гг) – выдающийся швейцарский математик большую часть жизни проведший в России. Эйлерово число М
оставалось самым большим простым числом более 100 лет.







