На нашем сайте вы можете читать онлайн «Оценка качества нейронных сетей. Алгоритмы и практические примеры». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Оценка качества нейронных сетей. Алгоритмы и практические примеры

Краткое содержание книги Оценка качества нейронных сетей. Алгоритмы и практические примеры, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Оценка качества нейронных сетей. Алгоритмы и практические примеры. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга «Оценка качества нейронных сетей: Алгоритмы и практические примеры» представляет собой практическое руководство по оценке качества нейронных сетей. В ней представлены не только основные алгоритмы оценки, но и шаги подготовки данных, обучения сети, получения предсказаний и интерпретации результатов. Авторы также исследуют возможности дальнейшего развития и предоставляют примеры применения алгоритма на реальных данных. Эта книга станет полезным ресурсом для исследователей, разработчиков.
Оценка качества нейронных сетей. Алгоритмы и практические примеры читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Оценка качества нейронных сетей. Алгоритмы и практические примеры без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Алгоритм вычисления AUC-ROC (Area Under the ROC Curve), которая оценивает производительность модели на основе ее способности правильно классифицировать образцы из двух классов, может быть описан следующим образом:
5.1. Получение набора данных исходных примеров и соответствующих меток классов.
5.2. Применение модели или алгоритма классификации к каждому примеру из набора данных для получения предсказанных вероятностей классификации.
5.3. Сортировка предсказанных вероятностей классификации по убыванию.
5.4. Вычисление значения TPR (True Positive Rate) и FPR (False Positive Rate) для каждого порогового значения отсечения.
5.5. Построение ROC-кривой, где по оси X откладывается FPR, а по оси Y – TPR.
5.6. Вычисление площади под ROC-кривой (AUC-ROC).
Алгоритм ROC-кривой и вычисления AUC-ROC может включать в себя различные методы, такие как метод трапеции или метод идеального ранга, в зависимости от требуемой точности.
AUC-ROC предоставляет информацию о способности модели правильно классифицировать образцы из двух классов, независимо от выбора порогового значения для классификации.
Цель алгоритма состоит в том, чтобы вычислить AUC-ROC, анализировать ROC-кривую и принять решение о производительности модели на основе площади под кривой.
Обратите внимание, что для вычисления AUC-ROC необходимо иметь доступ к предсказанным вероятностям классификации модели, чтобы определить ее поведение на разных пороговых значениях отсечения.
Книга также представляет другие алгоритмы и метрики, такие как ROC-кривая, PR-кривая, средняя абсолютная ошибка (MAE), среднеквадратичная ошибка (MSE) и многое другое. Обзор этих алгоритмов позволяет читателю выбрать наиболее подходящие методы оценки качества для его конкретной задачи и понять их интерпретацию.
Введение в нейронные сети и их применение в задачах классификации
Нейронные сети – это компьютерные модели, которые имитируют работу человеческого мозга и используются для обработки информации и принятия решений. Они состоят из множества взаимосвязанных узлов, называемых нейронами, которые обрабатывают входные данные и передают их на выход.
В задачах классификации нейронные сети используются для разделения данных на несколько классов.











