На нашем сайте вы можете читать онлайн «Квантовая химия в примерах». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Квантовая химия в примерах

Автор
Жанр
Дата выхода
19 февраля 2020
Краткое содержание книги Квантовая химия в примерах, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Квантовая химия в примерах. Предисловие указано в том виде, в котором его написал автор (Игорь А. Мерзляков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В первой книге серии «Путешествие в квантовую механику» были рассмотрены основные положения, связанные с общим аналитическим решением уравнения Шрёдингера. На данном этапе, не прибегая к помощи компьютера, мы научимся прогнозировать кристаллические структуры, молекулы, а также химические реакции.
Квантовая химия в примерах читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Квантовая химия в примерах без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Квантовым уровнем называется каждая новая оболочка атома, построенная как следующий слой, состоящий из потенциальных ям, вокруг куба предыдущего уровня, за исключением 1-го, толщиной в один полупериод синусоидальной функции.
Количество потенциальных ям, в которых могут существовать электроны, расположенные на оболочке куба, определяется из выражения D`.
Если h=1, то
В случае, когда h> 1 и h – чётная переменная, тогда:
Если h> 1 и h – нечётная, то:
Исходя из преобразований, разобранных выше, возможно сформулировать физический закон, позволяющий определить зависимости между величинами h, D` и теми коэффициентами, которые входят в состав электронной конфигурации рассматриваемого в каждом отдельном случае химического элемента.
Таблица 2.1 Сводная таблица, подтверждающая применимость периодического закона Менделеева к исследуемой модели атома.
Основными характеристиками, с помощью которых можно восстановить периодическую систему Д. И. Менделеева, являются соотношения между столбцами 3, 4 и 5 таблицы 2.
Для чётных h> 3:
Для нечётных h> 4 и всех остальных h <4:
3. Моделирование кристаллических структур и молекул
В данном параграфе мы рассмотрим примеры химических соединений, состоящих из 2-х атомов. Квантовый уровень рассматриваемых частиц будет равен h=2. В периодической таблице Менделеева наименования исследуемых бозонов расположены во 2-м периоде, куда входят химические элементы, начиная от лития Li и заканчивая неоном Ne.
Обозначим в виде крестиков те потенциальные ямы, в которых будут находиться электроны (по одной частице на одну или несколько потенциальных ям). Пустые потенциальные ямы, участвующие в образовании химических связей между атомами, обозначим треугольниками. В центральную потенциальную яму атома (куба) помещается положительно заряженное ядро. Области синусоидальной функции, где крестики и треугольники будут объединяться друг с другом, обозначим звёздочками. На практике подобное совмещение обусловлено появлением химических связей, которые могут удерживать атомы кристалла или молекулы в равновесии.
На иллюстрации 3.1 продемонстрированы 2 бозона, расположенные отдельно друг от друга на изображении слева и объединённые в общую структуру – справа.






