На нашем сайте вы можете читать онлайн «Введение в облачные и распределенные информационные системы». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Компьютерная литература, Книги о компьютерах. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Введение в облачные и распределенные информационные системы

Автор
Дата выхода
29 декабря 2020
Краткое содержание книги Введение в облачные и распределенные информационные системы, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Введение в облачные и распределенные информационные системы. Предисловие указано в том виде, в котором его написал автор (Тимур Машнин) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Облачные и распределенные вычислительные системы — это быстро развивающаяся IT-область хранения и обработки данных. Современные облачные и распределенные вычислительные системы строятся на основе общих концепций и алгоритмов, таких как облако, MapReduce, NoSQL базы данных, распределенные алгоритмы, масштабируемость и многое другое. Познакомьтесь с этими фундаментальными понятиями облачных и распределенных информационных систем и узнайте, как эти системы работают изнутри.
Введение в облачные и распределенные информационные системы читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Введение в облачные и распределенные информационные системы без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
И этим параллельная система отличается от распределенной системы.
Таким образом, процесс, это автономная работающая программа, которая может иметь несколько потоков.
Процесс выполняет множество задач, которые могут быть распределены по потокам, и которые могут выполняться на одном или нескольких процессорах.
В распределенных системах, эти процессы работают на разных устройствах, системные времена которых не синхронизированы.
В параллельных системах каждый поток процесса выполняется на своем процессоре или ядре процессора, и задачи таким образом выполняются параллельно.
При этом процессоры имеют синхронизированное системное время.
MapReduce
MapReduce – это модель распределённых вычислений, представленная компанией Google.
И эта модель используется для параллельных вычислений над очень большими наборами данных в компьютерных кластерах.
Термины map и reduce, которые составляют термин MapReduce, заимствованы из функциональных языков, таких как Lisp.
Например, вы хотите вычислить сумму квадратов.
Функция map – функция, которая может быть применена к любому из этих целых чисел и вычисляет квадрат каждого числа.
Так что map здесь является мета функцией, которая обрабатывает каждую запись.
Это первая часть.
Вторая часть – это функция reduce, которая получает на вход список соответствующих квадратов целых чисел и просто суммирует их.
reduce здесь снова является мета функцией, которая применяется к группе записей.
Предположим, что у нас есть текст, и нам нужно произвести подсчет для каждого слова, которое появляется в этом наборе данных.
Как сделать это? Особенно, когда вы имеете дело с большими объемами данных?
Здесь и появляется парадигма MapReduce.
Таким образом, map как задача или как объект обрабатывает отдельные записи для генерации промежуточных ключей / значений.
Если это простой файл, можно пройти через эти записи последовательно.
Но вы можете сделать этот процесс параллельным, особенно когда у вас большой набор данных.
Вы можете параллельно обрабатывать отдельные записи для генерации промежуточных пар ключ / значение.
Если y вас очень большой набор данных, вы можете разделить свой входной набор данных.
И назначить задачу map для каждого куска данных.
И соответствующий результат будет таким же, как если бы у вас была только одна задача map.
И это поможет существенно ускорить процесс.











