На нашем сайте вы можете читать онлайн «Глубокое обучение в машинном искусстве. Оптимизация идеальной модели». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Словари, справочники, Руководства. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Глубокое обучение в машинном искусстве. Оптимизация идеальной модели

Автор
Дата выхода
21 марта 2024
Краткое содержание книги Глубокое обучение в машинном искусстве. Оптимизация идеальной модели, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Глубокое обучение в машинном искусстве. Оптимизация идеальной модели. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Книга, в которой рассматривается применение глубокого обучения в машинном искусстве. Создании моделей искусственного интеллекта, а также важность оптимизации и достижения высокой точности. Книга предлагает подробные объяснения основных концепций и понятий, а также формулу для оптимизации модели. Даны примеры ее применения для создания идеальной модели с высокой точностью. Заключение содержит обобщение результатов и рекомендации для дальнейших исследований.
Глубокое обучение в машинном искусстве. Оптимизация идеальной модели читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Глубокое обучение в машинном искусстве. Оптимизация идеальной модели без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Глубокие сверточные нейронные сети (Deep Convolutional Neural Networks, DCNN) представляют собой расширение сверточных нейронных сетей (CNN), где использование дополнительных слоев позволяет модели изучать более абстрактные представления признаков на каждом уровне.
DCNN состоят из нескольких последовательно соединенных сверточных слоев, слоев пулинга и полносвязных слоев. Глубина сети указывает на количество слоев, и чем больше слоев, тем более сложные и абстрактные представления способна изучить модель.
Одной из основных техник, используемых в DCNN, является обучение сверточных фильтров на больших наборах данных. Сверточные фильтры обнаруживают различные локальные признаки в изображениях, включая границы, углы, текстуры и формы. Затем после каждого сверточного слоя может использоваться слой пулинга, который объединяет полученные признаки для снижения размерности и сохранения самых значимых признаков.
Слои в DCNN обычно укладываются глубоко друг за другом, что позволяет модели изучать все более сложные и абстрактные представления. Каждый слой изучает различные уровни признаков и использует их для построения более высокоуровневых представлений. Такая архитектура позволяет DCNN автоматически извлекать иерархические, сложные и абстрактные представления данных.
Глубокие сверточные нейронные сети показывают выдающуюся производительность в различных задачах компьютерного зрения, таких как классификация изображений, детектирование объектов, сегментация изображений, генерация изображений и другие.
5. Глубокие рекуррентные нейронные сети (Deep Recurrent Neural Networks, DRNN): DRNN являются комбинацией глубоких нейронных сетей и рекуррентных слоев.
Глубокие рекуррентные нейронные сети (Deep Recurrent Neural Networks, DRNN) представляют собой комбинацию глубоких нейронных сетей (со множеством слоев) и рекуррентных слоев.











