На нашем сайте вы можете читать онлайн «Алгоритмы и расчеты: Теория и практика. основные концепции». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Алгоритмы и расчеты: Теория и практика. основные концепции

Краткое содержание книги Алгоритмы и расчеты: Теория и практика. основные концепции, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Алгоритмы и расчеты: Теория и практика. основные концепции. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«Алгоритмы и расчеты: Теория и практика» — исчерпывающий и практически ориентированный гид в области алгоритмов, представляющий основные концепции, определения и значимость алгоритмов. Книга подробно объясняет рассматриваемую формулу и описывает шаги для реализации алгоритма на практике. Важное внимание уделяется анализу и оптимизации алгоритма, с использованием итеративного подхода для улучшения результатов. Книга полезна для студентов и специалистов, стремящихся улучшить понимание.
Алгоритмы и расчеты: Теория и практика. основные концепции читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Алгоритмы и расчеты: Теория и практика. основные концепции без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Важно иметь достаточно точную оценку вероятностей, чтобы алгоритм мог дать правильные результаты и применим в реальных условиях.
2. Логарифм: Формула содержит логарифм (база 2) от вероятности p_ij (log2 (p_ij)). Логарифм используется в формуле для измерения количества информации, содержащейся в каждом символе при его передаче через канал. Логарифмическая шкала позволяет выразить информацию в битах или иных единицах измерения информации.
Основание логарифма (в данном случае – база 2) определяет единицу измерения информации и соответствует двоичной системе.
Когда вероятность p_ij близка к 1, это означает, что символ i с большой вероятностью будет передан через канал j. Соответственно, такой символ будет содержать более значимую или "информативную" информацию. В результате значение логарифма будет ближе к максимальному значению, что указывает на большое количество информации.
В случае, когда вероятность p_ij близка к 0, символ i с низкой вероятностью будет передан через канал j. Такой символ будет содержать меньшую информацию, и значение логарифма будет приближаться к 0 или быть отрицательным.
Использование логарифмов позволяет учесть неравномерность распределения информации в символах и на основе этого определить, как эффективно происходит передача информации через канал.
3. Общая энтропия: Формула вычисляет сумму информации для каждого символа i и канала j и затем усредняет результаты по всем возможным значениям символов и каналов.
Сумма информации для каждого символа и канала ((p_ij * log2(p_ij)) / log2(n)) вычисляет количество информации, содержащейся в каждом символе при передаче через определенный канал. Затем эти значения усредняются (суммируются для всех символов и каналов и делятся на общее количество символов и каналов), чтобы получить общую меру информации – энтропию.
Энтропия позволяет оценить, насколько эффективно источник данных использует доступный канал связи. Чем выше энтропия, тем больше информации содержится в передаваемых символах, и тем менее эффективно используется канал связи. В случае, когда энтропия равна 0, это означает, что все символы передаются с вероятностью 1, и информация полностью идентична и без потерь.











