На нашем сайте вы можете читать онлайн «Алгоритм градиентного спуска. Объяснение основных концепций и принципов». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Алгоритм градиентного спуска. Объяснение основных концепций и принципов

Краткое содержание книги Алгоритм градиентного спуска. Объяснение основных концепций и принципов, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Алгоритм градиентного спуска. Объяснение основных концепций и принципов. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«Алгоритм градиентного спуска: объяснение основных концепций и принципов» — это книга, предлагающая подробное введение в алгоритм градиентного спуска и его применение в оптимизации параметров моделей машинного обучения. В книге рассматриваются ключевые концепции, такие как вычисление градиента, обновление параметров и выбор критериев остановки. Описываются практические примеры, исследуются преимущества и ограничения алгоритма и предлагаются рекомендации для дальнейшего развития и применения.
Алгоритм градиентного спуска. Объяснение основных концепций и принципов читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Алгоритм градиентного спуска. Объяснение основных концепций и принципов без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Рассмотрим несколько правил дифференцирования, которые могут быть применены к функциям, описывающим числитель и знаменатель формулы AGI:
1. Правило дифференцирования для константы: Производная константы равна нулю.
Это правило гласит, что производная по переменной любой постоянной функции равна нулю. Формально, если есть функция f (x) = C, где C – константа, то производная f (x) по переменной x будет равна нулю:
df (x) /dx = 0
Это связано с тем, что производная определяет скорость изменения функции по переменной, и поскольку у константы нет зависимости от переменной, она не меняется и ее изменение равно нулю.
2. Правило дифференцирования для суммы: Производная суммы функций равна сумме их производных.
Правило дифференцирования для суммы гласит, что производная суммы двух функций равна сумме их производных. Если у нас есть две функции f (x) и g (x), то производная суммы f (x) + g (x) по переменной x будет равна сумме производных этих функций по переменной x:
d (f (x) + g (x)) /dx = df (x) /dx + dg (x) /dx
Это связано с тем, что производная определяет скорость изменения функции по переменной, и правило позволяет раздельно учитывать влияние каждой функции на это изменение.
3. Правило дифференцирования для произведения: Производная произведения двух функций равна произведению одной функции на производную другой функции, плюс произведение другой функции на производную первой функции.
Это правило называется правилом дифференцирования для произведения. Если у нас есть две функции f (x) и g (x), то производная их произведения f (x) * g (x) по переменной x равна произведению первой функции (f (x)) на производную второй функции (dg (x) /dx), плюс произведение второй функции (g (x)) на производную первой функции (df (x) /dx):
d (f (x) * g (x)) /dx = f (x) * dg (x) /dx + g (x) * df (x) /dx
Это правило позволяет вычислять производные в сложных функциях, которые представлены в виде произведения нескольких функций.
4. Правило дифференцирования для сложной функции (правило цепочки): Производная сложной функции равна произведению производной внешней функции и производной внутренней функции.
Правило называется правилом дифференцирования для сложной функции, или правилом цепочки.










