Главная » Информатика 10 класс » Вопросы тестирования и нейросети (сразу полная версия бесплатно доступна) Николай Петрович Морозов читать онлайн полностью / Библиотека

Вопросы тестирования и нейросети

На нашем сайте вы можете читать онлайн «Вопросы тестирования и нейросети». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Информатика 10 класс. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

28 февраля 2024

Краткое содержание книги Вопросы тестирования и нейросети, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Вопросы тестирования и нейросети. Предисловие указано в том виде, в котором его написал автор (Николай Петрович Морозов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Еще одна моя книга, которая является практикумом по использованию Искусственного интеллекта (нейросетей) для проведения тестирования студентов и школьников по различным предметам и дисциплинам.

Вопросы тестирования и нейросети читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Вопросы тестирования и нейросети без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Первым этот тест проходит СhatGPT (ИИ2):

В соответствии с результатами, полученными нейросетью, заполним вариант теста на ПК, т.е. пройдем тест онлайн.

Посмотрите результат:

Отлично!

А как себя проявит Маша?

2.2.Маша

1. Площадь квадрата вычисляется по формуле S = a^2, где a – длина стороны квадрата. В данном случае сторона квадрата равна 3 см, следовательно, площадь S = 3^2 = 9 см^2.

Таким образом, площадь квадрата со стороной 3 см равна 9 квадратным сантиметрам.

2. Чтобы найти площадь прямоугольника, нужно умножить длину на ширину. В данном случае, у вас есть прямоугольник со сторонами 4 см и 6 см. Таким образом, площадь (S) прямоугольника вычисляется по формуле S = длина ? ширина, где длина = 6 см и ширина = 4 см.Подставляя значения, получаем S = 6 см ? 4 см = 24 см?. Итак, площадь прямоугольника со сторонами 4 см и 6 см равна 24 квадратным сантиметрам.

3. Для вычисления площади треугольника при известной стороне и высоте, проведенной к этой стороне, мы используем формулу S = (a * h) / 2, где a – длина стороны треугольника, h – высота, проведенная к этой стороне.В данном случае, сторона треугольника a = 7 см, а высота, проведенная к данной стороне h = 4 см. Подставив значения в формулу, мы получаем:

S = (7 см * 4 см) / 2 = 28 см? / 2 = 14 см?.

Таким образом, площадь треугольника со стороной 7 см и высотой 4 см, проведенной к данной стороне, равна 14 квадратным сантиметрам.

4. Площадь ромба можно найти, зная длины его диагоналей. Формула для нахождения площади ромба при известных диагоналях выглядит следующим образом: \( S = \frac{d_1 \cdot d_2}{2} \), где \( d_1 \) и \( d_2 \) – длины диагоналей. Подставляя в формулу значения длин диагоналей (6 см и 10 см), получаем:

\( S = \frac{6 \cdot 10}{2} = 30 \, см^2 \).

Таким образом, площадь ромба с диагоналями 6 см и 10 см равна 30 квадратным сантиметрам.

5. Для нахождения площади трапеции используется формула

\( S = \frac{a + b}{2} \times h \), где \( a \) и \( b \) – длины оснований, \( h \) – высота трапеции. Подставив в данную формулу известные значения (основания 4 см и 8 см, высота 2 см), мы получаем:

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Вопросы тестирования и нейросети, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Николай Петрович Морозов! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги