Главная » Физика » Моделирование физических процессов с помощью формулы. Бесконечные суммы и случайные функции (сразу полная версия бесплатно доступна) ИВВ читать онлайн полностью / Библиотека

Моделирование физических процессов с помощью формулы. Бесконечные суммы и случайные функции

На нашем сайте вы можете читать онлайн «Моделирование физических процессов с помощью формулы. Бесконечные суммы и случайные функции». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
1 чтение

Автор

ИВВ

Жанр

Физика

Дата выхода

21 февраля 2024

Краткое содержание книги Моделирование физических процессов с помощью формулы. Бесконечные суммы и случайные функции, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Моделирование физических процессов с помощью формулы. Бесконечные суммы и случайные функции. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

Книга «Моделирование физических процессов с помощью формулы F = ∑ (n=1,2,…,∞) [ψ (n) *e^ (iπ*n*x/L) * (-1) ^n] /n^2» представляет исследование и практическое руководство по применению данной формулы в различных областях физики. Формула и ее компоненты для применение в квантовой механике, оптике, электродинамике и других областях. Формула также предлагают численные методы для вычисления формулы и примеры численного моделирования. Книга обсуждает потенциал формулы в физическом моделировании.

Моделирование физических процессов с помощью формулы. Бесконечные суммы и случайные функции читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Моделирование физических процессов с помощью формулы. Бесконечные суммы и случайные функции без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Результатом этого шага будет выражение, в котором каждый уровень вносит свой вклад в итоговую сумму в зависимости от координаты x и длины системы L. Это позволяет учесть пространственную вариацию функции и амплитуды вкладов от различных уровней в моделируемой системе.

Шаг 3: Суммирование по всем уровням

Затем мы вычисляем сумму по всем уровням, начиная с n = 1 и продолжая до бесконечности. Мы можем ограничиться конечным числом уровней, чтобы упростить вычисления, например, суммировать до некоторого большого числа N.

Таким образом, формула принимает вид F (x) = ? (n=1,2,…,N) [(-1) ^n * e^ (i?*n*x/L)] /n^2.

В этом шаге мы суммируем вклады каждого уровня от n = 1 до n = N. Мы ограничиваем количество уровней, чтобы упростить вычисления и получить приближенное значение функции F(x).

Суммирование происходит по формуле ?(n=1,2,…,N) [(-1)^n * e^(i?*n*x/L)]/n^2, где каждый уровень n учитывается с соответствующим вкладом. (-1)^n определяет чередующийся знак вкладов от разных уровней, а e^(i?*n*x/L) определяет пространственную зависимость и вклад каждого уровня в зависимости от координаты x и длины системы L.

Выбор конкретного числа N зависит от требуемой точности и сложности модели. Чем больше N, тем более точное приближение мы получим, однако это также может потребовать больше вычислительных ресурсов. Практический выбор значения N будет зависеть от конкретной задачи моделирования и доступных ресурсов для вычислений.

Суммирование по всем уровням позволяет учесть вклад каждого уровня в итоговую функцию, учитывая их пространственную зависимость и знаки чередующихся вкладов от различных уровней.

Шаг 4: Вычисление значения функции

Наконец, мы можем подставить конкретное значение x и рассчитать значение функции F (x). Например, если мы хотим узнать значение F (x) в определенной точке x_0, мы можем вычислить эту сумму до N уровней, используя значения конкретной случайной функции ? (n), и получить численное значение F (x_0).

Итоговое значение функции F(x) может быть вычислено путем подстановки конкретного значения x, например, x_0, в формулу и проведения соответствующих вычислений.

Для вычисления численного значения F(x_0), мы подставляем значение x = x_0 в формулу F(x) = ?(n=1,2,…,N) [(-1)^n * e^(i?*n*x/L)]/n^2 и выполняем суммирование по всем уровням до N.

Конкретные шаги для вычисления значения функции F(x_0) включают:

1.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Моделирование физических процессов с помощью формулы. Бесконечные суммы и случайные функции, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора ИВВ! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги