На нашем сайте вы можете читать онлайн «QM-unique Formula: революционный подход к квантовым системам. От матрицы к вращению». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
QM-unique Formula: революционный подход к квантовым системам. От матрицы к вращению

Краткое содержание книги QM-unique Formula: революционный подход к квантовым системам. От матрицы к вращению, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению QM-unique Formula: революционный подход к квантовым системам. От матрицы к вращению. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
«QM-unique Formula: революционный подход к квантовым системам» — обзор книги, в которой подробно рассматривается уникальность и применение моей формулы QM-unique. Изложены основные концепции матрицы Адамара-Валеры и операторов вращения, а также их важность при изучении квантовых свойств, включая запутанность и суперпозицию. Материал уделяет внимание роли формулы в квантовых вычислениях, коммуникации, измерениях и разработке квантовых технологий.
QM-unique Formula: революционный подход к квантовым системам. От матрицы к вращению читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу QM-unique Formula: революционный подход к квантовым системам. От матрицы к вращению без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Например, для первого и второго слагаемых, где операторы вращения одинаковы, получим:
S = (1/sqrt (2)) * (1 +1) * exp (-i * (?/4) * ?k1)
+ (1/sqrt (2)) * (exp (-i * ?/6) * exp (-i * (?/3) * ?k2))
+ (-1/sqrt (2)) * (exp (-i * ?/6) * exp (-i * (?/3) * ?k2))
S = (1/sqrt (2)) * 2 * exp (-i * (?/4) * ?k1)
+ (1/sqrt (2)) * (exp (-i * ?/6) * exp (-i * (?/3) * ?k2))
– (1/sqrt (2)) * (exp (-i * ?/6) * exp (-i * (?/3) * ?k2))
S = sqrt (2) * exp (-i * (?/4) * ?k1) + (1/sqrt (2)) * (exp (-i * ?/6) – exp (-i * ?/6)) * exp (-i * (?/3) * ?k2)
S = sqrt (2) * exp (-i * (?/4) * ?k1) +0 * exp (-i * (?/3) * ?k2)
S = sqrt (2) * exp (-i * (?/4) * ?k1)
Это будет окончательное значение S для данного примера со значениями параметров и спецификой системы, указанными выше.
Обратите внимание, что конкретные значения параметров и специфик системы будут варьироваться в зависимости от конкретной квантовой системы, которую вы рассматриваете.
ИЛЛЮСТРАЦИЯ ПРИМЕРОВ ИСПОЛЬЗОВАНИЯ ФОРМУЛЫ НА РЕАЛЬНЫХ СИСТЕМАХ
Рассмотрим два примера применения формулы QM-unique на реальных системах:
1.
В данном примере у нас есть одиночный кубит, представленный двухуровневой системой. Значения параметров и специфики системы:
– Размер матрицы Адамара-Валеры (Aij): 2x2.
– Матрица Адамара-Валеры (Aij):
A11 = 1/sqrt (2), A12 = 1/sqrt (2)
A21 = 1/sqrt (2), A22 = -1/sqrt (2)
– Векторы (ki) и углы (?i):
k1 = (1, 0, 0), ?1 = ?/4
k2 = (0, 1, 0), ?2 = ?/3
– Фазы (?i):
?1 = 0, ?2 = ?/6
Подставим эти значения в формулу QM-unique и выполним расчет:
S = (1/sqrt (2)) * (1 * exp (-i * (?/4) * ?k1)) + (1/sqrt (2)) * (1 * exp (-i * (?/4) * ?k1))
+ (1/sqrt (2)) * (exp (-i * ?/6) * exp (-i * (?/3) * ?k2)) + (-1/sqrt (2)) * (exp (-i * ?/6) * exp (-i * (?/3) * ?k2))
Полученное значение S будет являться результатом расчета для данной системы одиночного кубита.
2. Пример: Частицы в одномерном квантовом потенциале.
В этом примере рассмотрим систему частиц, движущихся в одномерном квантовом потенциале. Значения параметров и специфики системы:
– Размер матрицы Адамара-Валеры (Aij): N x N, где N – число базисных состояний частиц.
– Матрица Адамара-Валеры (Aij): может быть численно определена или задана аналитически для конкретных случаев.
– Векторы (ki) и углы (?i): могут быть связаны с энергетическими уровнями системы и функциями волновой функции частиц.











