На нашем сайте вы можете читать онлайн «Открытие формулы Дейкстры-Прима. Решение задач на графе». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Открытие формулы Дейкстры-Прима. Решение задач на графе

Краткое содержание книги Открытие формулы Дейкстры-Прима. Решение задач на графе, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Открытие формулы Дейкстры-Прима. Решение задач на графе. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Исследуйте мощную формулу Дейкстры-Прима, объединяющую алгоритмы Дейкстры и Прима. Узнайте, как эта уникальная формула помогает решать задачи на графе, вычисляя кратчайшие пути и минимальные стоимости остовных деревьев. Разберитесь в компонентах формулы, ее уникальности и связи с алгоритмами Дейкстры и Прима. Исследуйте применение формулы для эффективного решения задач, таких как маршрутизация в сетях, анализ социальных сетей и планирование производства.
Открытие формулы Дейкстры-Прима. Решение задач на графе читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Открытие формулы Дейкстры-Прима. Решение задач на графе без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Формула D (x, y) = ? (x) + ? (y) – m (x, y) является мощным инструментом для решения задач на графе. Она совмещает в себе вычисление кратчайших путей и построение минимальных остовных деревьев, что делает ее универсальным подходом для эффективного решения различных задач связанных с графами.
Применение формулы для вычисления длины кратчайшего пути
Объяснение применения формулы для вычисления длины кратчайшего пути между двумя вершинами x и y
Формула D (x, y) = ? (x) + ? (y) – m (x, y) позволяет нам вычислить длину кратчайшего пути между вершинами x и y в графе, используя информацию о кратчайших путях от начальной вершины до вершины x (? (x)) и от вершины y до конечной вершины (? (y)), а также вес ребра, соединяющего вершины x и y (m (x, y)).
Применение формулы включает следующие шаги:
1. Необходимо найти кратчайшие пути от начальной вершины до всех остальных вершин в графе. Для этого используется алгоритм Дейкстры или аналогичный алгоритм. Результатом работы алгоритма является набор информации о кратчайших путях от начальной вершины до каждой вершины в графе.
2. Рассчитываем ? (x) – вес кратчайшего пути от начальной вершины до вершины x. Это значение уже было получено на первом шаге.
3. Необходимо также найти кратчайшие пути от вершины y до конечной вершины. Для этого можно снова воспользоваться алгоритмом Дейкстры, но на этот раз начальной вершиной будет являться вершина y. Результатом работы алгоритма будет набор информации о кратчайших путях от вершины y до каждой вершины в графе.
4. Рассчитываем ? (y) – вес кратчайшего пути от вершины y до конечной вершины. Это значение также уже было получено на предыдущем шаге.
5. Наконец, определяем вес ребра между вершинами x и y – m (x, y). Это может быть просто числовое значение, указывающее на стоимость перемещения от вершины x к вершине y.
6. Подставляем полученные значения ? (x), ? (y), и m (x, y) в формулу D (x, y) = ? (x) + ? (y) – m (x, y) и вычисляем итоговую длину кратчайшего пути между вершинами x и y.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/chitat-onlayn/?art=70127998) на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.











