На нашем сайте вы можете читать онлайн «Научные открытия». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Научные открытия

Автор
Дата выхода
19 ноября 2023
Краткое содержание книги Научные открытия, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Научные открытия. Предисловие указано в том виде, в котором его написал автор (Лиза Заикина) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Вначале я планировала написать книгу лишь с математическими теоремами, но потом поняла, что я слишком разносторонне развитый человек, чтобы делать акцент на чем–то одном. К сожалению, теоремы, которые я открывала в детстве, сейчас я вспомнить не смогла, поэтому написала новые. Эта книга включает в себя мое научное видение математики, геометрии, физики, химии, биологии, астрономии, географии, истории, литературы, искусства, спорта, медицины, психология, философии, религии, политики, экономики и дипломатии. В ней собраны мои теоремы, формулы, научные рассуждения, понятия и доказательства к ним.
Научные открытия читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Научные открытия без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Почему у мальчика получился овал, а не круг?
Решение: F круг, P – овал, R – ?
Используя общую формулу F * Ri = P, получим Ri = P / F. Когда мальчик рисовал круг, его радиус был непостоянен.
Ответ: У мальчика получился овал, а не круг, потому что он не смог увеличить радиус круга с одинаковой точностью от центра.
Теорема 18. Множество точек Хn образует фигуру P, которая определяет их расположение. На расположение точек оказывают влияние и разные факторы f. Таким образом точки Хn под влиянием факторов f образуют ту или иную фигуру P.
Х1 * f + Х2 * f + … + Хn * f = P
Доказательство:
Пусть мы имеем две точки Х1 и Х2, на одну из точек повлиял фактор f, тогда мы получим фигуру Р согласно формуле Х1 * f + Х2 = P.
Пример. Работник имел 130 кирпичей для строительства стены. 1 кирпича он недосчитался, 2 – у него раскололись. Получилось ли у работника построить стену, если для ее строительства требовалось 100 кирпичей.
Решение: Х1 = 130, Х2 = –1 (недосчет), Х3 = –2 (раскололись), Р = ?
Используя формулу Х1 * f + Х2 * f + … + Хn * f = P, получим 130 + (–1) * недосчет + (–2) * раскололись = 127.
Ответ: У работника получилось построить стену.
Теорема 19. Мы не можем доказать равенство фигур А = В по признакам i. Любой признак i может оказаться ошибочным.
Аi = Вi, где i – число непостоянное
Доказательство: Пусть фигуры А, В имеют два признака – 2 * i, тогда А2 * i = В2 * i.
Пример. Мальчику подарили две одинаковых игрушечных машины, но одна машина сломалась. После ремонта у сломанной машины изменился вид. Сколько у мальчика было одинаковых машин?
Решение: А – рабочая машина, В – машина после ремонта, i * 1 – рабочая, i * 0 после ремонта. Используя формулу Аi = Вi, получим Аi * 1 = Вi * 0 и Аi * 1 = 0, то есть А – машина без ремонта.
Ответ: У мальчика были две разных рабочих машины.
Теорема 20. Расстояние I, пройденное от предметов An, зависит от размера предметов An * R.
А1 < i < А2, где i = An * R
Доказательство:
Пусть А1 > A2, значит A1 > i > A2, то есть наибольшее пройденное расстояние приходится на А2.
Пример. Мальчик вышел из центрального подъезда первого дома в центральный подъезд другого.











