На нашем сайте вы можете читать онлайн «Все науки. №6, 2023. Международный научный журнал». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Все науки. №6, 2023. Международный научный журнал

Автор
Дата выхода
21 сентября 2023
Краткое содержание книги Все науки. №6, 2023. Международный научный журнал, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Все науки. №6, 2023. Международный научный журнал. Предисловие указано в том виде, в котором его написал автор (Ибратжон Хатамович Алиев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Международный научный журнал «Все науки», созданный при OOO «Electron Laboratory» и Научной школе «Электрон», является научным изданием, публикующим последние научные результаты в самых различных областях науки и техники, представляя собой также сборник публикаций по вышеуказанным темам коллегией авторов и рецензируемый редколлегией (учёным советом) Научной школы «Электрон».
Все науки. №6, 2023. Международный научный журнал читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Все науки. №6, 2023. Международный научный журнал без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
С целью решения такого подхода задач необходимо ввести граничные условия (2), в зависимости от постановки коих можно определить общее описание ситуации и при этом стоит обратить внимание на констатирование показателей (3).
Разумеется, можно было бы постараться определить общее решение, однако, к большому сожалению, это попросту невозможно и необходимо вводить те или иные граничные условия, которые сводятся из тех или иных условий. Яркий пример таких состояний – решение для свободной частицы, которая является по своей сути плоской волной.
Одним из частных решений является функция (5), выводимая через прямое решение дифференциального уравнения второго порядка.
В (4) константа Е может принимать практически все значения выше нуля, именно отсюда можно сделать вывод, что значения относятся к непрерывному спектру.
Отсюда и получается значение (7).
И наконец, при подстановке, можно получить решение уравнения (4), для случая свободной частицы, которая в том числе, при волновом исчислении является суперпозицией плоских волн (9).
Но если это был только один из частных случаев, то стоит рассмотреть и случай нахождения в одномерной потенциальной яме с бесконечно высокими стенками.
Решение, как можно было обратить внимание из прочих частных решений может быть сведено к форме (12).
Но если теперь для этого вида ввести граничные формы, можно прийти к решению показателя энергии как (13).











