На нашем сайте вы можете читать онлайн «Квантовый переворот: Открытие новых формул в мире квантовой физики. Революция в квантовой физике». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Физика. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Квантовый переворот: Открытие новых формул в мире квантовой физики. Революция в квантовой физике

Краткое содержание книги Квантовый переворот: Открытие новых формул в мире квантовой физики. Революция в квантовой физике, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Квантовый переворот: Открытие новых формул в мире квантовой физики. Революция в квантовой физике. Предисловие указано в том виде, в котором его написал автор (ИВВ) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В книге рассматриваются новые формулы, разработанные на основе последних экспериментальных результатов и теоретических представлений. Читатель узнает о принципиально новых подходах, давших возможность описать действительность на квантовом уровне.
Квантовый переворот: Открытие новых формул в мире квантовой физики. Революция в квантовой физике читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Квантовый переворот: Открытие новых формул в мире квантовой физики. Революция в квантовой физике без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Давайте выполним полный расчет по этой формуле.
1. Первым шагом будет вычисление квадрата скорости $v^2$:
$$ v^2 = (\text {скорость беспилотного транспортного средства}) ^2 $$
2. Затем вычислим отношение $v^2/c^2$:
$$ \frac {v^2} {c^2} = \frac {(\text {скорость беспилотного транспортного средства}) ^2} {c^2} $$
3. Далее, вычислим корень из выражения $1-\frac {v^2} {c^2} $:
$$ \sqrt {1-\frac {v^2} {c^2}} $$
4. Теперь, вычислим произведение $V\sqrt {1-\frac {v^2} {c^2}} $:
$$ V\sqrt {1-\frac {v^2} {c^2}} $$
5.
$$ \frac {\mu} {r} $$
6. Наконец, вычислим кинетическую энергию $K_ {tr} $ путем вычитания $\frac {\mu} {r} $ из $V\sqrt {1-\frac {v^2} {c^2}} $:
$$ K_ {tr} = V\sqrt {1-\frac {v^2} {c^2}} – \frac {\mu} {r} $$
Таким образом, полный расчет по данной формуле завершен и мы получаем значение кинетической энергии $K_ {tr} $.
Она позволяет в качестве источника энергии использовать специальную релятивистскую энергию для передвижения беспилотного транспортного средства.
Расчет кинетической энергии учитывает как эффекты специальной релятивистской теории относительности, так и гравитационную взаимодействие между транспортным средством и планетой (или другим астрономическим объектом).
Формула может быть использована для разработки новых эффективных беспилотных транспортных средств и применения квантовых концепций в технике.
Формула позволяет получить уникальное значение изменения волновой функции на бесконечно малом интервале и является новаторской в сфере квантовой физики.
f (x) = lim (h?0) [? (x+h) – ? (x)]
где:
f (x) – уникальная формула, которая определяет изменение волновой функции на бесконечно малом интервале;
x – координата точки на оси абсцисс;
h – бесконечно малый интервал, на котором находится предел изменения;
? (x) – волновая функция в точке x.
Для расчета формулы f (x) = lim (h?0) [? (x+h) – ? (x)], где f (x) – уникальная формула, которая определяет изменение волновой функции на бесконечно малом интервале, x – координата точки на оси абсцисс, h – бесконечно малый интервал, на котором находится предел изменения, ? (x) – волновая функция в точке x, нам потребуется вычислить предел изменения волновой функции при стремлении h к нулю.











