На нашем сайте вы можете читать онлайн «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData

Автор
Дата выхода
22 октября 2021
Краткое содержание книги Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData. Предисловие указано в том виде, в котором его написал автор (Евгений Сергеевич Штольц) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В этой книге Главный Архитектор Департамента Архитектуры Управления Технической Архитектуры (Центра Облачных Компетенций Cloud Native и Корпоративного университета архитекторов) и архитектор решения Сбербанка делится знаниями и опытом с читателей в области ML, полученных в работе Школе архитекторов. Автор:
* проводит читателя через процесс создания, обучения и развития нейронной сети, показывая детально на примерах
* повышает кругозор, показывая, какое она может занимать место в BigData с точки зрения Архитектора
* знакомит с реальными моделями в продуктовой среде
Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
0 тысяч 2018 – 3.5 тысяч 2019 – 5.8 тысяч 2020 – 6.5 тысяч
Рассмотрим США, так как она занимает лидирующее место по публикациям (36,3%) в AI от других стран в совокупи, что не удивительно, ведь доля PHD полученных в США от всех стран в совокупи в AI составляет 81,8%. PHD по компьютерным наукам специализация на ML/AI лидирует с долей 25% от всех направлений по компьютерным наукам, отрываясь от Теории алгоритмов с долей 8%. При этом скорость роста популярности за год у ML/AI самая высокая: 9%. А подробнее про рост с 2019 по 2020 (остальные показывают снижение популярности):
Artificial Intelligence/Machine Learning 9% Robotics/Vision 2.
При этом с каждым годом, получившие степень PhD (Doctor of Philosophy) в США, всё больше находят работу в частных компаниях, что подтверждает, что компании оценивают потенциал AI, который они смогут применить.:
год % 2010 – 44 2011 – 41 2012 – 50 2013 – 50 2014 – 58 2015 – 58 2016 – 60 2017 – 58 2018 – 61 2019 – 65
При этом важно замети
год Китай США 2010 – 0,2 тысяч 0,7 тысяч 2011 – 0,2 тысяч 0,7 тысяч 2012 – 0,2 тысяч 0,8 тысяч 2013 – 0,3 тысяч 0,9 тысяч 2014 – 0,3 тысяч 1,0 тысяч 2015 – 0,4 тысяч 1,3 тысяч 2016 – 0,5 тысяч 1,5 тысяч 2017 – 0,7 тысяч 2,0 тысяч 2018 – 1,1 тысяч 2,7 тысяч 2019 – 1,6 тысяч 3,6 тысяч
Раз есть публикации, значит есть и исследования, а наиболее полезные обычно (зависит от страны) патентуют. При этом рост экспоненциальный числа патентов в IA и доля IA патентов постепенно растёт от общего числа патентов:
год – тысяч патен
Ориентируясь на сегментацию AI публикаций на сайте arXiv можно косвенно провести с общей ситуацией по росту направлений в AI. В приведённой ниже статистике они все показывают рост и при том линейный.







