Главная » Знания и навыки » Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData (сразу полная версия бесплатно доступна) Евгений Сергеевич Штольц читать онлайн полностью / Библиотека

Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData

На нашем сайте вы можете читать онлайн «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

22 октября 2021

Краткое содержание книги Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData. Предисловие указано в том виде, в котором его написал автор (Евгений Сергеевич Штольц) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

В этой книге Главный Архитектор Департамента Архитектуры Управления Технической Архитектуры (Центра Облачных Компетенций Cloud Native и Корпоративного университета архитекторов) и архитектор решения Сбербанка делится знаниями и опытом с читателей в области ML, полученных в работе Школе архитекторов. Автор:

* проводит читателя через процесс создания, обучения и развития нейронной сети, показывая детально на примерах

* повышает кругозор, показывая, какое она может занимать место в BigData с точки зрения Архитектора

* знакомит с реальными моделями в продуктовой среде

Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Здесь автор для читателя демонстрирует на практике обучение нейронным сетям для цветных картинок, методы повышения качества предсказаний сети. Детально разбирается устройство, подводные камни при написании и обучении эффективных нейронных сетей.

* Современные архитектуры нейронных сетей. Приводятся архитектурные принципы, используемые в современных нейронных сетях для повышения качества предсказаний. Приводится разбор различных архитектур нейронных сетей, сделавших прорыв в качестве обучения и принёсших новые подходы.

Рассматриваются различные архитектурные универсальные паттерны увеличения качества, такие как создание ансамблей нейронных сетей.

* Использование предобученных сетей. Демонстрируется использование в своих сетях уже обученных слоёв.

* Масштабирование ML. Приводятся примеры подготовки окружения для запуска их в облачной инфраструктуре.

* Получение данных от BigData. Рассказывается, как можно из Jupyter подключаться к различным источникам данных, в том числе BigData, для обучения моделей.

* Подготовка больших данных. В этом разделе описываются BigData технологии, такие как Hadoop и Spark, которые являются источниками данных для обучения моделей.

* ML в промышленной среде. В этом разделе рассказываются о таких системах, как Kubeflow и MLflow. Читатель может попробовать развернуть платформу, настроить процесс обучения и запустить в облачной среде модель, как это делается в компаниях.

Об авторе. Автор является корпоративным (главным) архитектором крупного подразделения (трайба) компании Сбер.

Сбер лидер по объёмам накопленных данных в России и обладатель вычислительного центра для обучения моделей Кристофари, занимающей 39 место в ТОП500 мира и самый мощный в России и СНГ (первое место в ТОП50 СНГ), в нём разработано более 5000 моделей более тысячью DataSience учёных. Автор проходил обучение (Sber AI Architect, Sber Certified Architect) в Сбер в области искусственного интеллекта, создавал внутренние курсы по этой тематике для других архитекторов, разрабатывал предиктивную аналитику на машинном обучении в нейронных сетях для универсальных облачных систем, участвовал в качестве ментора (команда заняла 2 место среди всех команд Сбер) и оценщиком на соревнованиях Сбер.

Введение в машинное обучение

Искусственный интеллект (Artificial Intelligence, AI) – это область науки, созданная на стыке многих академических наук. Терми бы введён в 1956 году, в эпоху попыток эмитировать работу человеческого мозга.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Другие книги автора

Понравилась эта книга? Познакомьтесь с другими произведениями автора Евгений Сергеевич Штольц! В этом разделе мы собрали для вас другие книги, написанные вашим любимым писателем.

Похожие книги