На нашем сайте вы можете читать онлайн «Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData

Автор
Дата выхода
22 октября 2021
Краткое содержание книги Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData. Предисловие указано в том виде, в котором его написал автор (Евгений Сергеевич Штольц) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В этой книге Главный Архитектор Департамента Архитектуры Управления Технической Архитектуры (Центра Облачных Компетенций Cloud Native и Корпоративного университета архитекторов) и архитектор решения Сбербанка делится знаниями и опытом с читателей в области ML, полученных в работе Школе архитекторов. Автор:
* проводит читателя через процесс создания, обучения и развития нейронной сети, показывая детально на примерах
* повышает кругозор, показывая, какое она может занимать место в BigData с точки зрения Архитектора
* знакомит с реальными моделями в продуктовой среде
Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Последние годы:
* 1994 год – выигрыш Chinook в шашки у чемпиона мира,
* 1997 год – выигрыш Deep Blue в настольную игру шахматы у чемпиона мира,
* 2005 год – беспилотные автомобили на площадках (соревнование DARPA Grand Challenge),
* 2011 год – IBM Watson выиграла в телевизионной игре Jeopardy,
* 2012 год – Google X Lab распознаёт цветные изображения животных,
* 2016 год – Google Translate основан на нейронных сетях, выигрыш Google DeepMind AlphaGo у чемпиона мира по Go,
* 2017 год – выигрыш у чемпионов в коллективную 3D игру Dota2,
* 2018 год – беспилотные такси Alphabet Waymo на общих дорогах в Аризоне,
* 2019 год – победа Libratus чемпионов в покер,
* 2020 год – чат-бот на GPT-3 был не распознан собеседниками в социальной сети, видео-интерьвью с авотаром я не отличил от естественного,
* 2021 год – OpenAI Codex создаёт программы по детальному описанию задачи на естественном языке.
Достижения последнего времени:
* распознавание речи по движению губ;
* выигрыши в в 2D игры и 3D игры;
* выигрыши в настольные игры: шахматы, Go;
* синхронный перевод в Skype: разговор между людьми без знания языков друг друга;
* автопилот в автомобилях;
* FindFace распознаёт лица;
* описание изображение текстом и наоборот.
Достижения на 2019 год:
* чтение по губам лучше профессионала (DeepMind Lip Reading);
* изображения: фотореалистичная генерация изображений (Google bigGAN), трансформация видео (NVIDEA vid-to-vid), создание изображений по макетам (NVIDEA gauGAN), обучение беспилотников по виртуальным маршрутам (NVIDEA Drive);
* текст: GPT, BERT, BART, T5, ELMo и другие архитектуры развиваются, расширяют свою сферу применения, эволюционируют;
* звук: умные колонки, с умением автоответчика вести разговор;
* соревнования: AlphaZero обыграла чемпионов в Go и шахматы, другие сети обыграли в StartCraft, Dota-2, покер;
* медицина: визуализация снимков;
* автоматизация: AliBaba автоматизировала Ханджоу (светофоры, инфраструктура), Google автоматизировал охлаждение своих Data центров, автопилоты и другие Edge AI;
* доступность: дообучение готовых моделей в Cloud.







