На нашем сайте вы можете читать онлайн «Грохочение угля». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Монографии. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Грохочение угля

Дата выхода
28 августа 2020
Краткое содержание книги Грохочение угля, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Грохочение угля. Предисловие указано в том виде, в котором его написал автор (Данил Александрович Полулях) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Рассмотрены вопросы и обобщен опыт грохочения угля. Представлены результаты разработки нового способа подготовки машинных классов из рядового угля – гидромеханического. Изложены основы теории мокрого вибро-, гидро-, гидромеханического и гидравлического грохочения, а также описаны конструкции, технические характеристики и показатели работы оборудования, применяющегося при подготовительном грохочении. Предназначена для научных работников и специалистов, работающих в углеобогатительной отрасли, а также студентов и аспирантов горных вузов, обучающихся по специальности «Обогащение полезных ископаемых».
Грохочение угля читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Грохочение угля без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
20) можно проверить графическим путем нанесения опытных точек на функциональную координатную систему. При двойном последовательном логарифмировании уравнения (1.20) последнее приобретает вид
Пример построения такого графика (по данным табл. 1.5) показан на рис. 1.13.
Таблица 1.5
Гранулометрический состав исследуемого материала
Рис. 1.13. Характеристика крупности по Розину и Раммлеру
На осях против соответствующих логарифмических величин написаны значения выходов классов и диаметров зерен материала.
Параметры уравнения (1.20) b и n находят по двум известным точкам, решая систему уравнений:
При совместном решении получим
что, впрочем, можно написать и сразу по графику рис. 1.13. Зная n, определяем b:
Для примера по данным табл. 1.5 составлено следующее уравнение характеристики крупности материала:
Таблица 1.6
Уравнения гранулометрических характеристик крупности частиц
Уравнение Розина-Раммлера охватывает опытные точки в широком диапазоне крупностей, но оно не удовлетворяет одному конечному условию: нулевой выход классов достигается только при бесконечно большой крупности материала
При использовании уравнения Розина-Раммлера приходится считаться с этим обстоятельством и принимать конечную крупность материала, соответствующую какому-то определенному значению выхода класса.
В табл. 1.6 приведены наиболее известные уравнения гранулометрических характеристик частиц.
1.3.5. Кривые распределения
Кривые распределения показывают, число частиц или весовые выхода каждого класса крупности в данном материале. Материал, состоящий из смеси частиц разных размеров, разделенный на классы по крупности, можно рассматривать как статический коллектив. Размер частиц будет аргументом коллектива, а общее число частиц в пробе материала или ее общий вес составят числовой или весовой объем статического коллектива.
Если в прямоугольных координатах по оси абсцисс откладывать крупность классов и на соответствующих интервалах крупности построить прямоугольники, площади которых будут пропорциональны частоте класса, то получим гистограмму распределения зерен материала.







