На нашем сайте вы можете читать онлайн «Элементы». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Монографии. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Элементы

Автор
Дата выхода
13 сентября 2019
Краткое содержание книги Элементы, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Элементы. Предисловие указано в том виде, в котором его написал автор (Сен Гук Ким) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В книге представляются вывод элементарных формул распределения химических элементов и общая теория числового распределения всего множества естественных элементов, включающего и подмножество химических элементов. Теория всего множества естественных элементов Вселенной подводит к Эспилогической картине Мира на основе выявленного субстанциального естественного элемента Sp (Эспи). От Sp – Эспилогия.
Книга может представлять интерес для сфер просвещения, высшего образования, науки, техники и технологий.
Элементы читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Элементы без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Таблица 8 ? 15 с вынесенными за пределы таблицы первыми 1–4 химическими элементами
Здесь мы имеем 11 периодизирующихся рядов, т. е. 88 из 118 химических элементов. Это составляет около 74,6 %, что выше предыдущего случая на 13,6 %. Хорошая периодизируемость, но также далека от 100 процентной.
4. Двумерная числовая таблица 16 ? 8
16-разрядную таблицу рассматриваем в связи с тем, что она кратна 8-ми разрядной таблице, а на 8-ми разрядной таблице достигли максимальной периодичности в 74,6 %. В этом случае в таблице 128 числовых элементов.
Рис. 9. Таблица 16 ? 8 химических элементов
Элементы 121–128 относятся к следующему за f-бло-ком g-блоку ожидаемых химических элементов. Но их пока нет. Поэтому химических элементов и в этом случае только 118. В такой таблице имеются 4 периодизи-рующихся рядов, и в них 64 химических элемента. Они составляют примерно 54,23 %. Это намного меньше максимального 74,6 %. Уменьшать или повышать далее разрядность таблиц смысла не имеет.
Вывод: разрядность чисел не может служить основой систематизации химических элементов. Следует искать другие закономерности.
5. Специальное распределение натуральных чисел
1. Квадрат натуральных чётных чисел (2n)
при n = 1; 2; 3; 4:
(2n)
= 4; 16; 36; 64 (1)
2.
n
= ?(2n –1) (2)
Это подтверждается последовательной подстановкой каждого из n = 1; 2; 3; 4:
?(2n –1) = 1; 1 + 3; 1 + 3 + 5; 1 + 3 + 5; 1 + 3 + 5 + 7
Тогда: (2n)
= 2[2(1); 2(1 + 3); 2(1 + 3 + 5); 2(1 + 3 + 5 + 7)], (3)
и
(2n)
= 2(2n
) = 2(2; 8; 18; 32) (4)
Получились числовые сдвоенности – Диады из числовых Монад: 2; 8; 18; 32.
Просуммируем все Диады (4) с учётом (2), (3) и правила: «от перестановки мест слагаемых сумма не изменяется».
?2(2n
) = 2?2?(2n –1) = 2{2[(1) + (1 + 3) + (1 + 3 + 5) + (1 + 3 + 5 + 7)]} = 2(2) + 2(2 + 6) + 2(2 + 6 + 10) + 2(2 + 6 + 10 + 14) = 2(2) + 2(6 + 2) + 2(10 + 6 + 2) + 2(14 + 10 + 6 + 2)
Полученный результат представляет полное количество KD чисел в четырёх Диадах из пар (2 перед скобками) Монад, которые состоят последовательно из 1, 2, 3, 4 слагаемых (в скобках).





