На нашем сайте вы можете читать онлайн «Чудеса арифметики от Пьера Симона де Ферма». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Научно-популярная литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Чудеса арифметики от Пьера Симона де Ферма

Дата выхода
27 июня 2019
Краткое содержание книги Чудеса арифметики от Пьера Симона де Ферма, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Чудеса арифметики от Пьера Симона де Ферма. Предисловие указано в том виде, в котором его написал автор (Юрий Вениаминович Красков) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В данной книге показано, как знаменитая научная проблема под названием «Великая теорема Ферма» позволяет раскрывать несостоятельность и недееспособность науки, в которой арифметика по разным историческим причинам лишилась статуса первоосновы всех знаний. Необычный жанр книги назван в ней самой "Научный блокбастер", что означает сочетание остросюжетного повествования в стиле художественной прозы с отдельными фрагментами чисто научного содержания.
Чудеса арифметики от Пьера Симона де Ферма читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Чудеса арифметики от Пьера Симона де Ферма без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
С учётом того, что арифметика является единственной наукой, без которой не могут обойтись никакие другие науки, можно констатировать, что без ОТА не может обойтись вообще вся наука целиком! Но сама-то она даже не в курсе того, что как раз ОТА до сих пор и остаётся недоказанной. И как вы думаете, почему? … Да потому, что наука попросту не знает, что такое число!!!
Даже на далёких от науки людей этот очевидный факт может произвести просто шокирующее впечатление. Ведь тогда явно напрашивается вопрос: если наука не знает даже этого, то что же она тогда вообще может знать? В этой книге будет дано разъяснение в чём здесь трудность и предложено решение этой проблемы.
Как видно из этого примера, если даётся основополагающее определение понятия числа, то за этим сразу возникает необходимость построения начальной системы, определяющей границы знаний, в которых она может развиваться.
Но если наука строится в рамках системы, заложенной в неё изначально, то для неё будет непозволительной роскошью ситуация, когда каждая отдельная задача будет решаться только одним найденным специально для неё способом. Такая же проблема имела место и во времена Ферма, но почему-то кроме него никто тогда ею себя не утруждал. Возможно поэтому и задачи, которые он предлагал, выглядели настолько трудными, что было не ясно не только как их решать, но и даже с какой стороны к ним подходить.
Взять хотя бы для примера только одну его задачу, при решении которой великий английский математик Джон Валлис сумел-таки вычислить требуемые числа и даже получить похвалу от самого Ферма, ни одной задачи которого тогда ещё никто не мог решить. Однако Валлис так и не смог доказать, что применённый им метод Евклида будет достаточен во всех случаях. Целое столетие спустя, этой проблемой занялся Леонард Эйлер, но и он тоже не сумел довести её до конца.






