На нашем сайте вы можете читать онлайн «Наибольший общий делитель (НОД)». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Знания и навыки, Учебная и научная литература, Учебно-методические пособия. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Наибольший общий делитель (НОД)

Автор
Дата выхода
15 ноября 2018
Краткое содержание книги Наибольший общий делитель (НОД), аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Наибольший общий делитель (НОД). Предисловие указано в том виде, в котором его написал автор (Азамат Бекетович Киреев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
В данной книге приводятся четыре алгоритма нахождения наибольшего общего делителя, необходимая теория, формулы, 29 примеров с решениями, 140 упражнений с ответами.
Наибольший общий делитель (НОД) читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Наибольший общий делитель (НОД) без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Наибольший общий делитель (НОД)
Азамат Бекетович Киреев
В данной книге приводятся четыре алгоритма нахождения наибольшего общего делителя, необходимая теория, формулы, 29 примеров с решениями, 140 упражнений с ответами.
Предисловие
В данной книге приводятся четыре алгоритма нахождения наибольшего общего делителя, необходимая теория, формулы, 29 примеров с решениями, 140 упражнений с ответами.
Наибольший общий делитель (НОД) [двух чисел]
Теоретический материал
В таблице приведем два способа определения НОД.
Алгоритм №0.
Не является рациональным способом нахождения наибольшего общего делителя двух чисел
Выпишем все делители чисел 32 и 24.
Делители числа 32: 1, 2, 4, 8, 16, 32.
Делители числа 24: 1, 2, 3, 4, 6, 8, 12, 24.
Общими делителями 24 и 32 являются: 1, 2, 4, 8.
Наибольший из них – 8. Обозначается НОД(24;32)=8.
Замечание. Вышеизложенный алгоритм №0 не является рациональным способом нахождения НОД (им можно воспользоваться в том случае если вы забыли способы нахождения НОД).
Определение 3. Натуральные числа a и b называют взаимно простыми, если их наибольший общий делитель равен 1, то есть НОД(a; b) = 1.
Иначе выражаясь, если числа a и b не имеют никаких общих делителей, кроме 1, то они взаимно просты.
Пример 3.
1) Числа 2 и 5 взаимно простые (и сами они простые);
2) 2 и 9 взаимно простые (2 – простое, 9 – составное);
3) 8 и 9 взаимно простые (и оба они составные);
Замечание.
Правило. Если одно из данных чисел [36] является делителем другого числа [72], то оно [36] будет являться наибольшим общим делителем данных чисел [72 и 36].
Формулы, необходимые для алгоритма №1
Для вычисления по алгоритму №1 необходимо знать формулы
Замечание. Формулу a
=1 мы будем использовать «справа налево», то есть 1=a
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/azamat-beketovich-kireev/naibolshiy-obschiy-delitel-nod/) на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.








