На нашем сайте вы можете читать онлайн «Электроника и электротехника. Шпаргалка». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.
Электроника и электротехника. Шпаргалка

Дата выхода
05 июля 2009
Краткое содержание книги Электроника и электротехника. Шпаргалка, аннотация автора и описание
Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Электроника и электротехника. Шпаргалка. Предисловие указано в том виде, в котором его написал автор (Юлия Валерьевна Щербакова) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.
Описание книги
Все выучить – жизни не хватит, а экзамен сдать надо. Это готовая «шпора», написанная реальным преподом. Здесь найдешь все необходимое по «Общей электронике и электротехнике», а остальное – дело техники. Ни пуха, ни пера!
Данное учебное пособие предназначено для студентов высших и средних специальных учебных заведений, изучающих электронику и электротехнику.
Электроника и электротехника. Шпаргалка читать онлайн полную книгу - весь текст целиком бесплатно
Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Электроника и электротехника. Шпаргалка без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.
Текст книги
Уравнение напряжений, составленное по второму закону Кирхгофа для цепи с r и L, имеет вид:U = U
+ U
.
Рис. 15. Цепь, содержащая катушку с активным сопротивлением R и индуктивностью
На векторной диаграмме (рис. 15б) вектор U
совпадает с вектором тока, а вектор U
опережает вектор тока на 90°.
Из диаграммы следует, что вектор напряжения сети равен геометрической сумме векторов U
и U
. U = U
+ U
, а его значение
Выразив напряжения через ток и сопротивления, получим
Последнее выражение представляет собой закон Ома цепи (рис.
где z – полное сопротивление цепи.
Из векторной диаграммы следует, что напряжение цепи опережает по фазе ток на угол р и его мгновенное значение равно: ? = U
sin (?t + ?).
Графики мгновенных значений напряжения и тока цепи изображены на рисунке 15в.
Угол сдвига по фазе ? между напряжением и вызванным им током определяют из соотношения:
График p
(t) показывает, что активная мощность непрерывно поступает из сети и выделяется в активном сопротивлении в виде теплоты.
Мгновенная мощность, обусловленная энергией магнитного поля индуктивности, циркулирует между сетью и катушкой. Ее среднее значение за период равно нулю:
14. ЦЕПЬ, СОДЕРЖАЩАЯ РЕЗИСТИВНЫЙ И ЕМКОСТНОЙ ЭЛЕМЕНТЫ
Участок цепи с емкостью С будем представлять как участок, обладающий емкостным сопротивлением xc.
В этом случае уравнение напряжений цепи (рис. 16а) имеет вид: U = U
+ U
На (рис. 16б) изображена векторная диаграмма цепи r и С.
Рис. 16. Электрическая цепь, содержащая резистивный r и емкостный С элементы (а), ее векторная диаграмма (б), графики мгновенных значений (в), треугольники мощностей и сопротивлений (г и д)
Вектор напряжения U
совпадает с вектором тока, вектор U
отстает от вектора тока на угол 90°.
Выразив Ur и Uc через ток и сопротивления, получим:
откуда
Последнее выражение представляет собой закон Ома цепи r и C:
где z – полное сопротивление.
Графики u(i), i(t) изображены на рисунке 16в. Разделив стороны треугольника напряжений (рис. 16б) на ток, получим треугольник сопротивлений (рис.











