Главная » Техническая литература » Приборостроение (сразу полная версия бесплатно доступна) М. А. Бабаев читать онлайн полностью / Библиотека

Приборостроение

На нашем сайте вы можете читать онлайн «Приборостроение». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Техническая литература. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

0 баллов
0 мнений
0 чтений

Дата выхода

17 апреля 2009

Краткое содержание книги Приборостроение, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Приборостроение. Предисловие указано в том виде, в котором его написал автор (М. А. Бабаев) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

В книге вы найдете информативные ответы на все вопросы курса «Приборостроение» в соответствии с Государственным образовательным стандартом.

Приборостроение читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Приборостроение без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Р (АиВиСи…иF)= Р(А) ? Р(В)

? Р (С

) ?… ? Р(F)

.

В случае независимости событий (8) выглядит следующим образом.

Р (АиВиСи…иF)= Р (А) ? Р (В) ? Р (С) ? … ? Р (f).

Формула, которую привели выше, справедлива, если события А или В или С несовместимы. В случае их совместимости формула выглядит следующим образом:

Р(А ? В ? С)=Р(А) + Р(В) + Р(С) – Р(АиВиС).

Р (АиВиС)= Р (А) ? Р(В) ? Р (С)

С учетом этого получим

Р (А ? В ? С)=Р (А) + Р (В) + Р (С) – Р (А) ? Р (В) ? Р (С).

Теперь, после некоторого ознакомления с арифметическими операциями над вероятностями, можно привести формулу полной вероятности

В формуле предполагается, что событие А может произойти только с одним из n несовместимых событий B

….

,B

, то есть группа событий А и B

, или А и B

и т. д. Любая группа из этого ряда равносильна появлению события А.

Пример 2. Пусть события D, Е, F независимые. Какова будет вероятность событий трех извлечений подряд небракованных деталей при условии, что выборка повторная.

Решение. При данном условии после извлечения каждый раз бракованной детали, а больше одной детали нельзя извлечь, количество бракованных деталей с каждым разом уменьшается на единицу. В третий раз будет извлечена последняя бракованная деталь.

5. Распределение случайных величин

Затрагивая вопрос о вероятности некоторого события, нельзя не говорить о закономерностях появления случайных величин.

Чтобы упростить ситуацию, эти величины делят на:

1) прерывные (дискретные) – например, количество некоторой продукции, не отвечающее установленным стандартам;

2) непрерывные – например, единицы той же продукции, которые имеют неодинаковые параметры, но эти параметры находятся в пределах границ предельно допустимого.

Зависимость между возможными значениями случайных величин и их вероятностями, выраженными конкретным способом, называется законом распределения случайных величин.

Для того, чтобы установить математическую форму этого закона, предположим, что дискретная случайная величина х может принимать значения х

, x

, x

…, х

….

, x

, и пусть каждому из этих значений соответствует вероятность P

. Тогда ряд вероятностей, соответствующих значениям случайной величины х, будет иметь следующий вид P

,P

,P

,…,P

,…,P

.

Очевидно, что вероятность P

является некоторой функцией от переменной х и имеет вид: P

= f(х), где x = x

, i = 1, 2…, k.

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Приборостроение, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги