Главная » Публицистика и периодические издания » Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков (сразу полная версия бесплатно доступна) А. С. Молчанов читать онлайн полностью / Библиотека

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков

На нашем сайте вы можете читать онлайн «Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков». Эта электронная книга доступна бесплатно и представляет собой целую полную версию без сокращений. Кроме того, доступна возможность слушать аудиокнигу, скачать её через торрент в формате fb2 или ознакомиться с кратким содержанием. Жанр книги — Публицистика и периодические издания, Публицистическая литература, Военное дело / спецслужбы. Кроме того, ниже доступно описание произведения, предисловие и отзывы читателей. Регулярные обновления библиотеки и улучшения функционала делают наше сообщество идеальным местом для любителей книг.

Краткое содержание книги Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков, аннотация автора и описание

Прежде чем читать книгу целиком, ознакомьтесь с предисловием, аннотацией, описанием или кратким содержанием к произведению Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков. Предисловие указано в том виде, в котором его написал автор (А. С. Молчанов) в своем труде. Если нужная информация отсутствует, оставьте комментарий, и мы постараемся найти её для вас. Обратите внимание: Читатели могут делиться своими отзывами и обсуждениями, что поможет вам глубже понять книгу. Не забудьте и вы оставить свое впечатие о книге в комментариях внизу страницы.

Описание книги

В монографии дается системное изложение теории и практики распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков, полученных цифровыми оптикоэлектронными системами. Представлены особенности дешифрирования аэроснимков, классификация и описание признаков распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта, требования к результатам дешифрирования, требования к дешифровщикам и пути повышения их квалификации, практика применения систем автоматизированного дешифрирования. Существенное место уделено изложению разработанной авторами классификации инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта, описанию основных характеристик при дешифрировании аэроснимков.


В формате PDF A4 сохранен издательский макет книги.

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков читать онлайн полную книгу - весь текст целиком бесплатно

Перед вами текст книги, разбитый на страницы для удобства чтения. Благодаря системе сохранения последней прочитанной страницы, вы можете бесплатно читать онлайн книгу Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков без необходимости искать место, на котором остановились. А еще, у нас можно настроить шрифт и фон для комфортного чтения. Наслаждайтесь любимыми книгами в любое время и в любом месте.

Текст книги

Шрифт
Размер шрифта
-
+
Межстрочный интервал

Если архитектура сети задана, то вид функции G определяется значениями синаптических весов и смещенной сети.

Пусть решением некоторой задачи является функция Y=F(X), заданная параметрами входных-выходных данных (X

, Y

), (X

, Y

), …, (X

, Y

), для которых Y

=F(X

), где k=1, 2, …, N.

Обучение состоит в поиске (синтезе) функции G, близкой к F в смысле некоторой функции ошибки E.

Если выбрано множество обучающих примеров – пар (X

, Y

), где k=1, 2, …, N) и способ вычисления функции ошибки E, то обучение нейронной сети превращается в задачу многомерной оптимизации, имеющую очень большую размерность, при этом, поскольку функция E может иметь произвольный вид, обучение в общем случае – многоэкстремальная невыпуклая задача оптимизации.

Тут будет реклама 1

Для решения этой задачи могут использоваться следующие (итерационные) алгоритмы:

1. Алгоритмы локальной оптимизации с вычислением частных производных первого порядка:

градиентный алгоритм (метод наискорейшего спуска),

методы с одномерной и двумерной оптимизацией целевой функции в направлении антиградиента,

метод сопряженных градиентов,

методы, учитывающие направление антиградиента на нескольких шагах алгоритма.

Тут будет реклама 2

2. Алгоритмы локальной оптимизации с вычислением частных производных первого и второго порядка:

метод Ньютона,

методы оптимизации с разреженными матрицами Гессе,

квазиньютоновские методы,

метод Гаусса – Ньютона,

метод Левенберга – Марквардта и др.

Тут будет реклама 3

3. Стохастические алгоритмы оптимизации:

поиск в случайном направлении,

имитация отжига,

метод Монте-Карло (численный метод статистических испытаний).

4. Алгоритмы глобальной оптимизации (задачи глобальной оптимизации решаются с помощью перебора значений переменных, от которых зависит целевая функция).

2.8. Алгоритм обучения однослойного нейрона

Обучение нейронной сети в задачах классификации происходит на наборе обучающих примеров X(1), X(2), …, X(Р), в которых ответ – принадлежность к классу А или B – известен.

Тут будет реклама 4
Определим индикатор D следующим образом: положим D(X)=1, если X из класса А, и положим D(X)=0, если X из класса B, то есть

где всякий вектор X состоит из n компонент: X=(x

, x

…., x

).

Добавить мнение

Ваша оценка

Кликните на изображение чтобы обновить код, если он неразборчив

Мнения

Еще нет комментариев о книге Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков, и ваше мнение может быть первым и самым ценным! Расскажите о своих впечатлениях, поделитесь мыслями и отзывами. Ваш отзыв поможет другим читателям сделать правильный выбор. Не стесняйтесь делиться своим мнением!

Похожие книги